146 CHAPTER 3. MATHEMATICAL FOUNDATIONS
On the other hand, by (3.4.5) and
〈δF(u),v〉=
∫
Rn
δF(u)vdx,
we deduce that
∫
Rn
δF(u)vdx=
∫
Rn
(−∆u+f′(u))vdx ∀v∈H^1 (Rn).
Hence we obtain the derivative operatorδF(u)of (3.4.6) as
δF(u) =−∆u+f′(u).
3.4.2 Derivative operators of the Yang-Mills functionals
LetGaμ( 1 ≤a≤N^2 − 1 )be theSU(N)gauge fields. The Yang-Mills functional forGaμis
defined by
(3.4.7) F=
∫
M
[
−
1
4
Fμ νaFμ νa
]
dx,
whereMis the 4-dimensional Minkowski space, and
(3.4.8) Fμ νa =∂μGaν−∂νGaμ+gλabcGbμGcν.
In Section2.4.3, we have seen that the functional (3.4.7) is the scalar curvature part in the
Yang-Mills action (2.4.50).
Referring to derivative operators of functionals for the electromagnetic potential deduced
in Subsection2.5.3, we now derive the derivative operator for the Yang-Mills functional
(3.4.7):
d
dλ
∣
∣
∣
λ= 0
F(G+λG ̃) =−
1
2
∫
M
gμ αgν βFα βa
d
dλ
∣
∣
∣
λ= 0
Fμ νa(G+λG ̃)dx
=(by( 3. 4. 8 ))
=−
1
2
∫
M
Fμ νa
(
∂G ̃aν
∂xμ
−
∂G ̃aμ
∂xν
)
dx
−
1
2
∫
M
Fμ νagλabc(GbμG ̃cν+G ̃bμGcν)dx
=
∫
M
gμ αgν β
(
∂Fα βa
∂xμ
−gFα βcλcbaGbμ
)
G ̃aνdx.
By (3.4.5) we deduce the derivative operatorδFof (3.4.7) as
(3.4.9) δF=∂αFα βa −ggα μλcbaFα βc Gμb, β= 0 , 1 , 2 , 3 ,
whereλcba=λcba.