146 CHAPTER 3. MATHEMATICAL FOUNDATIONS
On the other hand, by (3.4.5) and
〈δF(u),v〉=∫RnδF(u)vdx,we deduce that
∫
RnδF(u)vdx=∫Rn(−∆u+f′(u))vdx ∀v∈H^1 (Rn).Hence we obtain the derivative operatorδF(u)of (3.4.6) as
δF(u) =−∆u+f′(u).3.4.2 Derivative operators of the Yang-Mills functionals
LetGaμ( 1 ≤a≤N^2 − 1 )be theSU(N)gauge fields. The Yang-Mills functional forGaμis
defined by
(3.4.7) F=
∫M[
−
1
4
Fμ νaFμ νa]
dx,whereMis the 4-dimensional Minkowski space, and
(3.4.8) Fμ νa =∂μGaν−∂νGaμ+gλabcGbμGcν.
In Section2.4.3, we have seen that the functional (3.4.7) is the scalar curvature part in the
Yang-Mills action (2.4.50).
Referring to derivative operators of functionals for the electromagnetic potential deduced
in Subsection2.5.3, we now derive the derivative operator for the Yang-Mills functional
(3.4.7):
d
dλ∣
∣
∣
λ= 0F(G+λG ̃) =−1
2
∫Mgμ αgν βFα βa
d
dλ∣
∣
∣
λ= 0Fμ νa(G+λG ̃)dx=(by( 3. 4. 8 ))=−
1
2
∫MFμ νa(
∂G ̃aν
∂xμ−
∂G ̃aμ
∂xν)
dx−
1
2
∫MFμ νagλabc(GbμG ̃cν+G ̃bμGcν)dx=
∫Mgμ αgν β(
∂Fα βa
∂xμ−gFα βcλcbaGbμ)
G ̃aνdx.By (3.4.5) we deduce the derivative operatorδFof (3.4.7) as
(3.4.9) δF=∂αFα βa −ggα μλcbaFα βc Gμb, β= 0 , 1 , 2 , 3 ,
whereλcba=λcba.