Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

3.5.SU(N)REPRESENTATION INVARIANCE 159


x^1

x^2 N

2
R^2 N

2

SU(N)

xk

A

TASU(N)
τA

γ(t)

Figure 3.2: Tangent spaceTASU(N)atA∈SU(N).

For infinitesimalt, the solution of (3.5.12) is


γ(t) =A+tτA⊂SU(N).

It follows that


(3.5.13) (A+tτA)†(A+tτA) =I.


AsA†A=Iandtis infinitesimal, we deduce from (3.5.13) that


(3.5.14) A†τA+τA†A= 0.


Hence, (3.5.14) is the condition for anN-th order complex matrixτ∈TASU(N):A†τis
anti-Hermitian. Namely,


(3.5.15) TASU(N) ={τ|τsatisfies( 3. 5. 14 )}.


Note that


(3.5.16) A+tτA=A(I+tA†τA) =AetA


†τA
,

for infinitesimalt. If we replaceτbyiτ, then (3.5.15) can be expressed as


(3.5.17) TASU(N) ={iτ|A†τ=τ†A,Tr(A†τ) = 0 }.


By (3.5.17),∀A∈SU(N)there is a neighborhoodUA⊂SU(N)such that for anyΩ∈UA,Ω
can be written as


(3.5.18) Ω=AeiA


†τ
for someiτ∈TASU(N).

Here the traceless condition in (3.5.17)


Tr(A†τ) = 0
Free download pdf