Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

162 CHAPTER 3. MATHEMATICAL FOUNDATIONS


2) SU(N)tensor gab. The structure constantsλbca generated by the generatorsωain
(3.5.27) satisfy
(3.5.29) [ωb,ωc] =iλbcaωaA†, ∀A∈SU(N)

then we can define another 2-covariant tensorgabonTASU(N)by the structure con-
stantsλbcaas follows

(3.5.30) gab=

1


4 N


λadcλcbd.

The following theorem shows that bothGabandgabare symmetric second-orderSU(N)
tensors.


Theorem 3.31.The fieldsGab(A)and gabgiven by (3.5.28) and (3.5.30) are 2-order sym-
metric SU(N)tensors, and for any A∈SU(N), the generator basis (3.5.27) satisfies (3.5.29),
whereλbcaare the structure constants of SU(N)independent of A.


Proof.We first considergab. By the anti-symmetry of the structure constants:


λabc =−λbac,

we deduce the symmetry ofgab:


gab=λadcλcbd=λdacλbcd=gba.

Now we verify the symmetry ofGab. By (3.5.17) the basis(ω 1 ,···,ωK)ofTASU(N)
satisfy that


(3.5.31) A†ωa= (A†ωa)†, tr(A†ωa) = 0 , A†=A−^1 ,


NamelyA†ωaare Hermitian. LetA†ωa=τa, then


(3.5.32) τa=τa†, trτa= 0.


Thus we have


(3.5.33) Gab=


1


2


tr(ωaωb†) =

1


2


tr(Aτaτ†bA†) =

1


2


tr(τaτb†).

Thanks to (3.5.32),(τ 1 ,···,τK)∈TeSU(N). Hence we have


(3.5.34) τaτb†=τbτ†a+iλabcτc, trτc= 0.


It follows from (3.5.33) and (3.5.34) that


Gab=

1


2


tr(τaτ†b) =

1


2


tr(τbτa†) =Gba.

2.1.4 Symmetry.


Finally we prove that for anyA∈SU(N), each generator basis(ω 1 ,···,ωK)ofTASU(N)
satisfy (3.5.29). In fact, by (3.5.31),τa=A†ωa( 1 ≤a≤K)constitute a basis ofTeSU(N).
Thereforeτasatisfies (3.5.34), i.e.


A†[ωa,ωb]A=iλabcA†ωc.

Hence we obtain (3.5.29). The proof is complete.

Free download pdf