4.1. PRINCIPLES OF UNIFIED FIELD THEORY 187
The derivative operatorsDμare given by
(4.1.20)
Dμψe= (∂μ+ieAμ)ψe,
Dμψw= (∂μ+igwWμaσa)ψw,
Dμψs= (∂μ+igsSkμτk)ψs.
The geometry of unified fields consists of 1) the field functions and 2) the Lagrangian
action (4.1.17), which are invariant under the following seven transformations:
1) the general linear transformationQp= (aμν):TpM→TpMwithQ−p^1 = (bμν)T, for
anyp∈M:
(4.1.21)
(g ̃μ ν) =Qp(gμ ν)QTp,
A ̃μ=aνμAν,
W ̃μa=aνμWνa for 1≤a≤ 3 ,
̃Skμ=aνμSkν for 1≤k≤ 8 ,
̃γμ=bνμγν, ̃∂μ=aνμ∂ν,
with no change on other fields, whereγμare the Dirac matrices;
2) the Lorentz transformation onTpM:
(4.1.22)
L= (lνμ):TpM→TpM, Lis independent ofp∈M,
(g ̃μ ν) =L(gμ ν)LT, A ̃μ=lμνAν,
W ̃μa=lνμWνa for 1≤a≤ 3 ,
S ̃kμ=lνμSνk for 1≤k≤ 8 ,
Ψ ̃=RLΨ, RLis the spinor transformation matrix,
∂ ̃μ=lνμ∂ν,
with no change on other fields;
3) theU( 1 )gauge transformation onM⊗pC^4 :
(4.1.23)
Ω=eiθ:C^4 →C^4 ∈U( 1 ),
(
ψ ̃e,A ̃μ
)
=
(
eiθψe,Aμ−
1
e
∂μθ
)
,
4) SU( 2 )gauge transformation onM⊗p(C^4 )^2 :
(4.1.24)
Ω=eiθ
aσa
:(C^4 )^2 →(C^4 )^2 ∈SU( 2 ),
(
ψ ̃w,W ̃μaσa,m ̃w
)
=
(
Ωψw,WμaΩσaΩ−^1 +
i
gw
∂μΩΩ−^1 ,ΩmwΩ−^1