204 CHAPTER 4. UNIFIED FIELD THEORY
under theU( 1 )×SU( 2 )×SU( 3 )gauge transformation as follows
(4.3.17)
(
ψ ̃e,A ̃μ
)
=
(
eiθψe,Aμ−
1
e
∂μθ
)
,
(
ψ ̃w,W ̃μaσa
)
=
(
Uψw,WμaUσaU−^1 +
i
gw
∂μUU−^1
)
, U=eiθ
aσa
,
(
ψ ̃s,S ̃kτk
)
=
(
eiφ
kτk
ψs,SkμΩτkΩ−^1 +
i
gs
∂μΩΩ−^1
)
, Ω=eiφ
kτk
,
m ̃l=eiθ
aσa
mle−iθ
aσa
,
m ̃q=eiφ
kτk
mqe−iφ
kτk
.
However, the equations (4.3.9)-(4.3.15) are not invariant under the transformation (4.3.17)
due to the termsDgμφνg,Deνφe,Dwνφaw,Dsνφkson the right-hand sides of (4.3.9)-(4.3.12) con-
taining the gauge fieldsAμ,WμaandSkμ.
Hence, the unified field model based on PID and PRI satisfies thespontaneous gauge-
symmetry breaking as stated in Principle4.4and PRI.
4.3.2 Coupling parameters and physical dimensions
There are a number of to-be-determined coupling parametersin the general form of the uni-
fied field equations (4.3.9)-(4.3.15), and theSU( 2 )andSU( 3 )generatorsσaandτkare taken
arbitrarily. With PRI we are able to substantially reduce the number of these to-be-determined
parameters in the unified model to twoSU( 2 )andSU( 3 )tensors
{αaw}= (α 1 w,α 2 w,α 3 w), {αks}= (α 1 s,···,α 8 s),
containing 11 parameters, representing the portions distributed to the gauge potentials by the
weak and strong charges.
Also, if we takeσa( 1 ≤a≤ 3 )as the Pauli matrices (3.5.36) andτk=λk( 1 ≤k≤ 8 )as
the Gell-Mann matrices (3.5.38), then the two metricsGabwandGklsare Euclidian:
Gabw=δab, Gkls=δkl.
Hence we usually take the Pauli matricesσaand the Gell-Mann matricesλkas theSU( 2 )and
SU( 3 )generators.
For convenience, we first introduce dimensions of related physical quantities. LetErep-
resent energy,Lbe the length andtbe the time. Then we have
(Aμ,Wμa,Skμ):
√
E/L, (e,gw,gs):
√
EL,
(Jμ,Jμa,Qμk): 1/L^3 , (φe,φaw,φks):
√
E
√
LL
,
(h ̄,c):(Et,L/t), mc/h ̄: 1/L.
In addition, for gravitational fields we have
(4.3.18)
gμ ν: dimensionless, R: 1/L^2 , Tμ ν:E/L^3 ,
φμg: 1/L, G:L^5 /Et^4.