Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

204 CHAPTER 4. UNIFIED FIELD THEORY


under theU( 1 )×SU( 2 )×SU( 3 )gauge transformation as follows


(4.3.17)


(


ψ ̃e,A ̃μ

)


=


(


eiθψe,Aμ−

1


e

∂μθ

)


,


(


ψ ̃w,W ̃μaσa

)


=


(


Uψw,WμaUσaU−^1 +

i
gw
∂μUU−^1

)


, U=eiθ

aσa
,
(
ψ ̃s,S ̃kτk

)


=


(


eiφ

kτk
ψs,SkμΩτkΩ−^1 +

i
gs
∂μΩΩ−^1

)


, Ω=eiφ

kτk
,

m ̃l=eiθ
aσa
mle−iθ
aσa
,

m ̃q=eiφ

kτk
mqe−iφ

kτk
.

However, the equations (4.3.9)-(4.3.15) are not invariant under the transformation (4.3.17)
due to the termsDgμφνg,Deνφe,Dwνφaw,Dsνφkson the right-hand sides of (4.3.9)-(4.3.12) con-
taining the gauge fieldsAμ,WμaandSkμ.
Hence, the unified field model based on PID and PRI satisfies thespontaneous gauge-
symmetry breaking as stated in Principle4.4and PRI.


4.3.2 Coupling parameters and physical dimensions


There are a number of to-be-determined coupling parametersin the general form of the uni-
fied field equations (4.3.9)-(4.3.15), and theSU( 2 )andSU( 3 )generatorsσaandτkare taken
arbitrarily. With PRI we are able to substantially reduce the number of these to-be-determined
parameters in the unified model to twoSU( 2 )andSU( 3 )tensors


{αaw}= (α 1 w,α 2 w,α 3 w), {αks}= (α 1 s,···,α 8 s),

containing 11 parameters, representing the portions distributed to the gauge potentials by the
weak and strong charges.
Also, if we takeσa( 1 ≤a≤ 3 )as the Pauli matrices (3.5.36) andτk=λk( 1 ≤k≤ 8 )as
the Gell-Mann matrices (3.5.38), then the two metricsGabwandGklsare Euclidian:


Gabw=δab, Gkls=δkl.

Hence we usually take the Pauli matricesσaand the Gell-Mann matricesλkas theSU( 2 )and
SU( 3 )generators.
For convenience, we first introduce dimensions of related physical quantities. LetErep-
resent energy,Lbe the length andtbe the time. Then we have


(Aμ,Wμa,Skμ):


E/L, (e,gw,gs):


EL,


(Jμ,Jμa,Qμk): 1/L^3 , (φe,φaw,φks):


E



LL


,


(h ̄,c):(Et,L/t), mc/h ̄: 1/L.

In addition, for gravitational fields we have


(4.3.18)


gμ ν: dimensionless, R: 1/L^2 , Tμ ν:E/L^3 ,
φμg: 1/L, G:L^5 /Et^4.
Free download pdf