Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

206 CHAPTER 4. UNIFIED FIELD THEORY


From the field theoretical point of view instead of the field particle point of view, the
coefficients in (4.3.21)-(4.3.24) should be


(4.3.27)


(α 1 w,α 2 w,α 3 w) =αw(ω 1 ,ω 2 ,ω 3 ),
(β 1 w,β 2 w,β 3 w) =βw(ω 1 ,ω 2 ,ω 3 ),
(γ 1 w,γ 2 w,γ 3 w) =γw(ω 1 ,ω 2 ,ω 3 ),
(δ 1 w,δ 2 w,δ 3 w) =δw(ω 1 ,ω 2 ,ω 3 ),

and


(4.3.28)


(αs 1 ,···,αs 8 ) =αs(ρ 1 ,···,ρ 8 ),
(β 1 s,···,β 8 s) =βs(ρ 1 ,···,ρ 8 ),
(γ 1 s,···,γ 8 s) =γs(ρ 1 ,···,ρ 8 ),
(δ 1 s,···,δ 8 s) =γs(ρ 1 ,···,ρ 8 ),

with the unit modules:


|ω|=


ω 12 +ω 22 +ω 32 = 1 ,

|ρ|=


ρ^21 +···+ρ^28 = 1 ,

using the Pauli matricesσaand the Gell-Mann matricesλkas the generators forSU( 2 )and
SU( 3 )respectively.
The twoSU( 2 )andSU( 3 )tensors in (4.3.27) and (4.3.28),


(4.3.29) ωa= (ω 1 ,ω 2 ,ω 3 ), ρk= (ρ 1 ,···,ρ 8 ),


are very important, by which we can obtainSU( 2 )andSU( 3 )representation invariant gauge
fields:


(4.3.30) Wμ=ωaWμa, Sμ=ρkSkμ.


which represent respectively the weak and the strong interaction potentials.
In view of (4.3.27)-(4.3.30), the unified field equations for the four fundamental forces
are written as


Rμ ν−

1


2


gμ νR+

8 πG
c^4

Tμ ν=

[


∇μ+

eαe
̄hc

Aμ+

gwαw
hc ̄

Wμ+

gsαs
hc ̄


]


(4.3.31) φνg,


∂νAν μ−eJμ=

[


∂μ+

eβe
hc ̄

Aμ+

gwβw
hc ̄

Wμ+

gsβs
̄hc


]


(4.3.32) φe,


∂νWν μa −
gw
hc ̄

(4.3.33) εbcagα βWα μbWβc−gwJμa


=


[


∂μ−

1


4


k^2 wxμ+

eγe
̄hc

Aμ+

gwγw
hc ̄

Wμ+

gsγs
hc ̄


]


φwa,

∂νSkν μ−

gs
̄hc

(4.3.34) fijkgα βSα μi Sβj−gsQkμ


=


[


∂μ−

1


4


k^2 sxμ+

eδe
hc ̄

Aμ+

gwδw
̄hc

Wμ+

gsδs
hc ̄


]


φsk,

(4.3.35) (iγμDμ−m)Ψ= 0.

Free download pdf