238 CHAPTER 4. UNIFIED FIELD THEORY
Inserting (4.6.25) into (4.6.13) we get
(4.6.26) −∆Φw+k 12 Φw=gwQw+
gwB
ρw
1
r
e−k^0 r,
whereBis a parameter with dimension 1/L, given by
B=
1
4
κk^20 cτ, κis as in (4.6.24).
SincegwQw=−gwJ 0 wis the weak charge density, we have
Qw=β δ(r),
andβis a scaling factor. We can take proper unit forgssuch thatβ=1. Thus, putting
Qw=δ(r)in (4.6.26) we derive that
(4.6.27) −∆Φw+k^21 Φw=gwδ(r)+
gwB
ρw
1
r
e−k^0 r.
Let the solution of (4.6.27) be radially symmetric, then the equation (4.6.27) can be equiva-
lently written as
(4.6.28) −
1
r^2
d
dr
(
r^2
d
dr
)
Φw+k^21 Φw=gwδ(r)+
gwB
ρw
1
r
e−k^0 r.
The solution of (4.6.28) can be expressed as
(4.6.29) Φw=
gw
r
e−k^1 r−
gwB
ρw
φ(r)e−k^0 r,
whereφ(r)satisfies the equation
(4.6.30) φ′′+ 2
(
1
r
−k 0
)
φ′−
(
2 k 0
r
+k^21 −k^20
)
φ=
1
r
.
Letφbe in the form
φ=
∞
∑
n= 0
βnrn (the dimension ofφ isL).
Insertingφinto (4.6.30), comparing coefficients ofrn, we get
β 1 =k 0 β 0 +
1
2
,
β 2 =
1
2
(k^20 −k^21 )β 0 +
1
3
k 0 ,
..
.
βn=
2 k 0
n+ 1
βn− 1 −(k^20 −k^21 )βn− 2 , n≥ 2.