Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

238 CHAPTER 4. UNIFIED FIELD THEORY


Inserting (4.6.25) into (4.6.13) we get

(4.6.26) −∆Φw+k 12 Φw=gwQw+


gwB
ρw

1


r
e−k^0 r,

whereBis a parameter with dimension 1/L, given by


B=


1


4


κk^20 cτ, κis as in (4.6.24).

SincegwQw=−gwJ 0 wis the weak charge density, we have


Qw=β δ(r),

andβis a scaling factor. We can take proper unit forgssuch thatβ=1. Thus, putting
Qw=δ(r)in (4.6.26) we derive that


(4.6.27) −∆Φw+k^21 Φw=gwδ(r)+
gwB
ρw


1


r

e−k^0 r.

Let the solution of (4.6.27) be radially symmetric, then the equation (4.6.27) can be equiva-
lently written as


(4.6.28) −


1


r^2

d
dr

(


r^2

d
dr

)


Φw+k^21 Φw=gwδ(r)+

gwB
ρw

1


r

e−k^0 r.

The solution of (4.6.28) can be expressed as

(4.6.29) Φw=


gw
r

e−k^1 r−

gwB
ρw

φ(r)e−k^0 r,

whereφ(r)satisfies the equation


(4.6.30) φ′′+ 2


(


1


r

−k 0

)


φ′−

(


2 k 0
r

+k^21 −k^20

)


φ=

1


r

.


Letφbe in the form


φ=



n= 0

βnrn (the dimension ofφ isL).

Insertingφinto (4.6.30), comparing coefficients ofrn, we get


β 1 =k 0 β 0 +

1


2


,


β 2 =

1


2


(k^20 −k^21 )β 0 +

1


3


k 0 ,
..
.

βn=
2 k 0
n+ 1

βn− 1 −(k^20 −k^21 )βn− 2 , n≥ 2.
Free download pdf