Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

5.2. QUARK MODEL 273


Thus, each matrixU∈SU(N)is a linear transformation:


(5.2.14) U:CN→CN,


and eachU∈SU(N)gives


(5.2.15) U∗:C
N
→C
N
.


Remark 5.4.In particle physics, a complex orthogonal basis{e 1 ,···,eN}ofCNstands forN
different particles, and its conjugate basis{e 1 ,···,eN}stands for theNantiparticles. Hence
we have


(5.2.16)


CN=the space of all states of particlese 1 ,···,eN,
C
N
=the space of all states of antiparticlese 1 ,···,eN.

Thus, the mappingsU∈SU(N)in (5.2.14) stand for state transformations of particlese 1 ,···,eN,
andU∗∈SU(N)for state transformations of antiparticlese 1 ,···,eN.


4.Tensor product of matrices.In quantum physics we often see tensor products of matri-
ces. Here we give their definition. LetA,Bbe two matrices given by


A=





a 11 ··· a 1 n
..
.

..


.


an 1 ··· ann



, B=





b 11 ··· b 1 m
..
.

..


.


bm 1 ··· bmm



.


Then the tensor productA⊗Bis defined by


(5.2.17) A⊗B=





a 11 B ··· a 1 nB
..
.

..


.


an 1 B ··· annB



,


whereaijBare the block matrices


aijB=




aijb 11 ··· aijb 1 m
..
.

..


.


aijbm 1 ··· aijbmm



.


HenceA⊗Bis an(n×m)-th order matrix.


5.Irreducible representation of SU(N).In the quark model, we shall meet the notations:

(5.2.18)


meson= 3 ⊗ 3 ,
baryon= 3 ⊗ 3 ⊗ 3 ,

representing the tensor products:


(5.2.19)


meson=SU( 3 )⊗SU( 3 ),
baryon=SU( 3 )⊗SU( 3 )⊗SU( 3 ).
Free download pdf