6.5. FIELD THEORY OF MULTI-PARTICLE SYSTEMS 383
and the mass matrix is given by (6.5.16). The action is
(6.5.25) L=
∫
(LG+LKG)dxwhereLGis as given by (6.5.18), andLKGis the Klein-Gordon sector given by
LKG=
1
2
|DμΦ|^2 +1
2
(c
h ̄) 2
|MΦ|^2
Dμ=∂μ+ig
̄hcG^0 μ+ig
̄hcGaμτa.Then, the PID equations of (6.5.25) are as follows
Gab[
∂νGbν μ−g
̄hcλcdbgα βGcα μGdβ]
+
ig
2[
(DμΦ)†(τaΦ)−(τaΦ)†(DμΦ)]
(6.5.26)
=
[
∂μ−1
4
k^2 xμ+
g
hc ̄αGμ+
g
hc ̄βG^0 μ]
φa for 1≤a≤N^2 − 1 ,DμDμ
φ 1
..
.
φN
−
(c
h ̄) 2
M^2
φ 1
..
.
φN
(6.5.27) = 0.
Mixed systems
Consider a maxed system consisting ofN 1 fermions withn 1 chargesgandN 2 bosons with
n 2 chargesg, and the fields are
Dirac fields: Ψ= (ψ 1 ,···,ψN 1 )T,
Klein-Gordon fields: Φ= (φ 1 ,···,φN 2 )T.The interaction fields of this system areSU(N 1 )×SU(N 2 )gauge fields,SU(N 1 )gauge fields
are for fermions, andSU(N 2 )for bosons:
{Gaμ| 1 ≤a≤N 12 − 1 } for Dirac fieldsΨ,
{G ̃kμ| 1 ≤k≤N 22 − 1 } for Klein-Gordon fieldsΦ.The action is given by
(6.5.28) L=
∫[
LG^1 +LG^2 +LD+LKG
]
dx,whereLG^1 andLG^2 are the sectors ofSU(N 1 )andSU(N 2 )gauge fields as given in (6.5.18)
withN=N 1 andN=N 2 respectively.
Define the two total gauge fields ofSU(N 1 )andSU(N 2 ), as defined by (6.5.9)-(6.5.10):
(6.5.29)
Gμ=αNa^1 Gaμ for 1≤a≤N 12 − 1 ,
G ̃μ=αN^2
k
G ̃kμ for 1≤k≤N 22 − 1.