6.5. FIELD THEORY OF MULTI-PARTICLE SYSTEMS 387
are the sectors ofSU(N 1 )andSU(N 2 )gauge fields for the electromagnetic interaction
(6.5.40)
LAN^1 =−
1
4
Gabgμ αgν βAaμ νAbα β 1 ≤a,b≤N^21 − 1 ,
LAN^2 =−
1
4
G ̃klgμ αgν βA ̃k
μ νA ̃
l
α β^1 ≤k,l≤N
2
2 −^1 ,
Aaμ ν=∂μAaν−∂νAaμ+
n 1 e
̄hc
λbcaAbμAcν n 1 ∈Z,
A ̃kμ ν=∂μA ̃kν−∂νA ̃kμ+n^2 e
̄hc
̃λk
ijA ̃
i
μA ̃
j
ν n 2 ∈Z,
andLD,LKGare the Dirac and Klein-Gordon sectors:
(6.5.41)
LD=Ψ
[
iγμ
(
∂μ+
in 1 e
hc ̄
A^0 μ+
in 1 e
hc ̄
Aaμτa
)
−
c
h ̄
M 1
]
Ψ,
LKG=
1
2
gμ ν(DμΦ)†(DνΦ)+
1
2
(c
̄h
) 2
|M 2 Φ|^2 ,
Dμ=∇μ+
in 2 e
hc ̄
A^0 μ+
in 2 e
hc ̄
A ̃kμ ̃τk,
whereM 1 andM 2 are the masses,∇μ is the covariant derivative, andA^0 μis the external
electromagnetic field.
Based on PID and PLD, the field equations of (6.5.39) are given by
(6.5.42)
δ
δgμ ν
L=
c^4
8 πG
DGμφνg, (PID)
δ
δAaμ
L=DAμφa, (PID)
δ
δA ̃kμ
L=D
̃A
μφ ̃k, (PID)
δ
δΨ
L= 0 , (PLD)
δ
δΦ
L= 0 , (PLD)
where
(6.5.43)
DGμ=∇μ+
n 1 e
hc ̄
Aμ+
n 2 e
̄hc
A ̃μ,
DAμ=∂μ−
1
4
k^21 xμ+
n 1 e
̄hc
αAμ+
n 2 e
hc ̄
̃αA ̃μ,
D
A ̃
μ=∂μ−
1
4
k^22 xμ+
n 1 e
̄hc
βAμ+
n 2 e
hc ̄
β ̃A ̃μ.
HereAμ=αaN^1 AaμandA ̃μ=αkN^2 A ̃kμare the total electromagnetic fields generated by the
fermion system and the boson system.