Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

6.5. FIELD THEORY OF MULTI-PARTICLE SYSTEMS 387


are the sectors ofSU(N 1 )andSU(N 2 )gauge fields for the electromagnetic interaction


(6.5.40)


LAN^1 =−


1


4


Gabgμ αgν βAaμ νAbα β 1 ≤a,b≤N^21 − 1 ,

LAN^2 =−

1


4


G ̃klgμ αgν βA ̃k
μ νA ̃

l
α β^1 ≤k,l≤N

2
2 −^1 ,

Aaμ ν=∂μAaν−∂νAaμ+

n 1 e
̄hc

λbcaAbμAcν n 1 ∈Z,

A ̃kμ ν=∂μA ̃kν−∂νA ̃kμ+n^2 e
̄hc

̃λk
ijA ̃

i
μA ̃

j
ν n 2 ∈Z,

andLD,LKGare the Dirac and Klein-Gordon sectors:


(6.5.41)


LD=Ψ


[


iγμ

(


∂μ+

in 1 e
hc ̄

A^0 μ+

in 1 e
hc ̄

Aaμτa

)



c
h ̄

M 1


]


Ψ,


LKG=


1


2


gμ ν(DμΦ)†(DνΦ)+

1


2


(c
̄h

) 2


|M 2 Φ|^2 ,


Dμ=∇μ+
in 2 e
hc ̄

A^0 μ+
in 2 e
hc ̄

A ̃kμ ̃τk,

whereM 1 andM 2 are the masses,∇μ is the covariant derivative, andA^0 μis the external
electromagnetic field.
Based on PID and PLD, the field equations of (6.5.39) are given by


(6.5.42)


δ
δgμ ν

L=


c^4
8 πG

DGμφνg, (PID)

δ
δAaμ
L=DAμφa, (PID)

δ
δA ̃kμ

L=D


̃A
μφ ̃k, (PID)

δ
δΨ

L= 0 , (PLD)


δ
δΦ

L= 0 , (PLD)


where


(6.5.43)


DGμ=∇μ+

n 1 e
hc ̄

Aμ+

n 2 e
̄hc

A ̃μ,

DAμ=∂μ−

1


4


k^21 xμ+

n 1 e
̄hc

αAμ+

n 2 e
hc ̄

̃αA ̃μ,

D


A ̃
μ=∂μ−

1


4


k^22 xμ+

n 1 e
̄hc

βAμ+

n 2 e
hc ̄

β ̃A ̃μ.

HereAμ=αaN^1 AaμandA ̃μ=αkN^2 A ̃kμare the total electromagnetic fields generated by the
fermion system and the boson system.

Free download pdf