6.5. FIELD THEORY OF MULTI-PARTICLE SYSTEMS 387
are the sectors ofSU(N 1 )andSU(N 2 )gauge fields for the electromagnetic interaction
(6.5.40)
LAN^1 =−
1
4
Gabgμ αgν βAaμ νAbα β 1 ≤a,b≤N^21 − 1 ,LAN^2 =−1
4
G ̃klgμ αgν βA ̃k
μ νA ̃l
α β^1 ≤k,l≤N2
2 −^1 ,Aaμ ν=∂μAaν−∂νAaμ+n 1 e
̄hcλbcaAbμAcν n 1 ∈Z,A ̃kμ ν=∂μA ̃kν−∂νA ̃kμ+n^2 e
̄hc̃λk
ijA ̃i
μA ̃j
ν n 2 ∈Z,andLD,LKGare the Dirac and Klein-Gordon sectors:
(6.5.41)
LD=Ψ
[
iγμ(
∂μ+in 1 e
hc ̄A^0 μ+in 1 e
hc ̄Aaμτa)
−
c
h ̄M 1
]
Ψ,
LKG=
1
2
gμ ν(DμΦ)†(DνΦ)+1
2
(c
̄h) 2
|M 2 Φ|^2 ,
Dμ=∇μ+
in 2 e
hc ̄A^0 μ+
in 2 e
hc ̄A ̃kμ ̃τk,whereM 1 andM 2 are the masses,∇μ is the covariant derivative, andA^0 μis the external
electromagnetic field.
Based on PID and PLD, the field equations of (6.5.39) are given by
(6.5.42)
δ
δgμ νL=
c^4
8 πGDGμφνg, (PID)δ
δAaμ
L=DAμφa, (PID)δ
δA ̃kμL=D
̃A
μφ ̃k, (PID)δ
δΨL= 0 , (PLD)
δ
δΦL= 0 , (PLD)
where
(6.5.43)
DGμ=∇μ+n 1 e
hc ̄Aμ+n 2 e
̄hcA ̃μ,DAμ=∂μ−1
4
k^21 xμ+n 1 e
̄hcαAμ+n 2 e
hc ̄̃αA ̃μ,D
A ̃
μ=∂μ−1
4
k^22 xμ+n 1 e
̄hcβAμ+n 2 e
hc ̄β ̃A ̃μ.HereAμ=αaN^1 AaμandA ̃μ=αkN^2 A ̃kμare the total electromagnetic fields generated by the
fermion system and the boson system.