7.1. ASTROPHYSICAL FLUID DYNAMICS 401
By (7.1.20) we have
R=gμ νRμ ν=−e−uR 00 +e−νR 11 +2
r^2R 22.
Then, by (7.1.20) andRνμ=gν αRα μwe get
R^00 −
1
2
R=−e−v(
1
r^2−
v′
r)
+
1
r^2,
R^11 −
1
2
R=−e−v(
u′
r+
1
r^2)
+
1
r^2,
R^22 −
1
2
R=−
1
2
e−v(
u′′−1
2
u′v′+1
2
u′^2 +1
ru′−1
rv′)
In addition, we know that
DαTμα=D 0 Tμ^0 +D 1 Tμ^1 +D 2 Tμ^2 +D 3 Tμ^3 ,DαTμβ=∂Tμβ
∂xα+Γβα νTμν−Γνα μTνβ.Thus, by (7.1.19) we have
DαT 1 α=
dp
dr+
1
2
(p+c^2 ρ)u′,DαTμα= 0 forμ 6 = 1.Hence, the field equations (7.1.27) can be written as
e−v(
1
r^2−
v′
r)
−
1
r^2=−
8 πG
c^2(7.1.28) ρ,
e−v(
1
r^2+
u′
r)
−
1
r^2=
8 πG
c^4(7.1.29) p,
e−v(u′′−1
2
u′v′+1
2
u′^2 +1
ru′−1
rv′) =16 πG
c^2(7.1.30) p,
p′+1
2
(7.1.31) (p+c^2 ρ)u′= 0.
By the Bianchi identity, only three equations of (7.1.28)-(7.1.31) are independent. Here
we also regardpandρas unknown functions. Therefore, for the four unknown functions
u,v,p,ρ, we have to add an equation of state to the system of (7.1.28)-(7.1.31):
(7.1.32) ρ=f(p),
and the functionfwill be given according to physical conditions.
On the surfacer=Rof the ball,p=0 anduandvare given in terms of the Schwarzschild
solution:
(7.1.33) p(R) = 0 , u(R) =−v(R) =ln
(
1 −
2 Gm
Rc^2