7.1. ASTROPHYSICAL FLUID DYNAMICS 407
whereAμis the electromagnetic potential, the time components ofgμ νare as
g 00 =−(
1 +
2
c^2
ψ)
, g 0 k=gk 0 = 0 for 1≤k≤ 3 ,andψis the gravitational potential.
2.Fluid dynamic equations.The Newton Second Law can be expressed as(7.1.63)
dP
dτ=Force,whereτis the proper time given by
(7.1.64) dτ=
√
−g 00 dt,Pis the momentum density field, formally defined by
dx
dτ=
1
ρP,
withρbeing the energy density,
dP
dτ=
∂P
∂ τ+
∂P
∂xkdxk
dτ=
∂P
∂ τ+
1
ρ(P·∇)P,
and
ν∆P+μ∇(divP) the frictional force,
−∇p the pressure gradient,
c^2
2ρ( 1 −βT)∇g 00 =−ρ( 1 −βT)∇ψ the gravitational force.Hence, the momentum form of the fluid dynamic equations (7.1.63) is written as
(7.1.65)
∂P
∂ τ+
1
ρ(P·∇)P=ν∆P+μ∇(divP)−∇p−ρ( 1 −βT)∇ψ,where the differential operators∆,∇and(P·∇)are with respect to the space metricgij( 1 ≤
i,j≤ 3 )determined by (7.1.62), as defined in (7.1.2)-(7.1.8).
3.Heat conduction equation:(7.1.66)
∂T
∂ τ+
1
ρ(P·∇)T=κ∆ ̃T+Q,where ̃∆is defined as
̃∆T=−√^1
g
∂
∂xi(
√
ggij∂T
∂xj),
andg=det(gij), 1 ≤i,j≤3.
4.Energy-momentum conservation:(7.1.67)
∂ ρ
∂ τ+divP= 0 ,whereρis the energy density: