Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

7.4. GALAXIES 449


By the boundary conditions in (7.4.14), we obtain that


(7.4.16) β 1 =


rk 02 ζ 1 −rk 12 ζ 0
r 1 k^1 rk 02 −rk 01 rk 12

, β 2 =

rk 11 ζ 0 −rk 01 ζ 1
r 1 k^1 rk 02 −rk 01 rk 12

.


Thus we derive the solution of (7.4.14) as

P ̃φ, T ̃=T 0 +T^0 −T^1
r 1 −r 0

r 1 (

r 0
r

− 1 ), p ̃=

∫[P ̃ 2


φ


ρG
r^2

( 1 −βT ̃)Mr

]


dr.

Make the translation


Pr→Pr, Pφ→Pφ+P ̃φ, T→T+T ̃, p→p+ ̃p;

then the equations (7.4.4) and boundary conditions (7.4.5) become


(7.4.17)


∂Pφ
∂ τ

+


1


ρ
(P·∇)Pφ=ν∆Pφ−(

P ̃φ
r

+


dP ̃φ
dr
)Pr−

1


r

∂p
∂ φ

,


∂Pr
∂ τ

+


1


ρ

(P·∇)Pr=ν∆Pr+

2 P ̃φ
αr

Pφ+

ρ βMrG
αr^2

T−


1


α

∂p
∂r

,


∂T


∂ τ

+


1


ρ

(P·∇)T=κ∆ ̃T+
r 0 r 1
ρr^2

γPr−

1


ρr

P ̃φ∂T
∂ φ

,


divP= 0 ,
P= 0 , T=0 atr=r 0 ,r 1 ,

wherer= (T 0 −T 1 )/(r 1 −r 0 ).
The eigenvalue equations of (7.4.17) are given by


(7.4.18)


−∆Pφ+

1


ν

(


P ̃φ
r

+


dP ̃φ
dr

)Pr+

1



∂p
∂ φ

=λPφ,

−∆Pr−

2 P ̃φ
α νr

Pφ−

ρ βMrG
α νr^2

T+


1


α ν

∂p
∂r

=λPr,

−∆T+


1


ρr

P ̃φ∂T
∂ φ


r 0 r 1 γ
κ ρr^2

Pr=λT,

divP= 0 ,
P= 0 , T= 0 atr=r 0 ,r 1.

The eigenvaluesλof (7.4.18) are discrete (not counting multiplicity):


λ 1 >λ 2 >···>λk>···, λk→ −∞ask→∞.

The first eigenvalueλ 1 and first eigenfunctions

(7.4.19) Φ= (Pφ^0 ,Pr^0 ,T^0 )

Free download pdf