7.4. GALAXIES 449
By the boundary conditions in (7.4.14), we obtain that
(7.4.16) β 1 =
rk 02 ζ 1 −rk 12 ζ 0
r 1 k^1 rk 02 −rk 01 rk 12
, β 2 =
rk 11 ζ 0 −rk 01 ζ 1
r 1 k^1 rk 02 −rk 01 rk 12
.
Thus we derive the solution of (7.4.14) as
P ̃φ, T ̃=T 0 +T^0 −T^1
r 1 −r 0
r 1 (
r 0
r
− 1 ), p ̃=
∫[P ̃ 2
φ
rρ
−
ρG
r^2
( 1 −βT ̃)Mr
]
dr.
Make the translation
Pr→Pr, Pφ→Pφ+P ̃φ, T→T+T ̃, p→p+ ̃p;
then the equations (7.4.4) and boundary conditions (7.4.5) become
(7.4.17)
∂Pφ
∂ τ
+
1
ρ
(P·∇)Pφ=ν∆Pφ−(
P ̃φ
r
+
dP ̃φ
dr
)Pr−
1
r
∂p
∂ φ
,
∂Pr
∂ τ
+
1
ρ
(P·∇)Pr=ν∆Pr+
2 P ̃φ
αr
Pφ+
ρ βMrG
αr^2
T−
1
α
∂p
∂r
,
∂T
∂ τ
+
1
ρ
(P·∇)T=κ∆ ̃T+
r 0 r 1
ρr^2
γPr−
1
ρr
P ̃φ∂T
∂ φ
,
divP= 0 ,
P= 0 , T=0 atr=r 0 ,r 1 ,
wherer= (T 0 −T 1 )/(r 1 −r 0 ).
The eigenvalue equations of (7.4.17) are given by
(7.4.18)
−∆Pφ+
1
ν
(
P ̃φ
r
+
dP ̃φ
dr
)Pr+
1
rν
∂p
∂ φ
=λPφ,
−∆Pr−
2 P ̃φ
α νr
Pφ−
ρ βMrG
α νr^2
T+
1
α ν
∂p
∂r
=λPr,
−∆T+
1
ρr
P ̃φ∂T
∂ φ
−
r 0 r 1 γ
κ ρr^2
Pr=λT,
divP= 0 ,
P= 0 , T= 0 atr=r 0 ,r 1.
The eigenvaluesλof (7.4.18) are discrete (not counting multiplicity):
λ 1 >λ 2 >···>λk>···, λk→ −∞ask→∞.
The first eigenvalueλ 1 and first eigenfunctions
(7.4.19) Φ= (Pφ^0 ,Pr^0 ,T^0 )