Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

452 CHAPTER 7. ASTROPHYSICS AND COSMOLOGY


whereMbis the mass of the black hole core,Qis the heat source generated by the nuclear
burning, and


̃∆=^1
r^2 sinθ


∂ θ
(sinθ


∂ θ

)+


1


αr^2


∂r
(r^2


∂r

),


α=

(


1 −


2 MbG
c^2 r

)− 1


.


The boundary conditions of (7.4.23) become


(7.4.25) Pφ(Rs) =RsΩ 0 , Pφ(R 1 ) =R 1 Ω 1 , T(Rs) =T 0 , T(R 1 ) =T 1 ,


whereΩ 0 ,Ω 1 only depend onθ,T 0 ,T 1 are constants.
Make the translation


Pr→Pr, Pθ→Pθ, Pφ→Pφ+P ̃φ, T→T+T ̃, p→p+ ̃p,

where(P ̃φ,T ̃, ̃p,ρ)is the solution of (7.4.24)-(7.4.25). Then the equations (7.4.7) are rewrit-
ten as


(7.4.26)


∂Pθ
∂ τ

+


1


ρ

(P·∇)Pθ=ν∆Pθ−

P ̃φ
ρrsinθ

∂Pθ
∂ φ

+


2cosθP ̃φ
ρrsinθ

Pφ−

1


r

∂p
∂ θ

,


∂Pφ
∂ τ

+


1


ρ

(P·∇)Pφ=ν∆Pφ−

1


ρr

∂P ̃φ
∂ θ

Pθ−

P ̃φ
ρrsinθ

∂Pφ
∂ φ


1


ρ

∂P ̃φ
∂r

Pr


P ̃φ
ρr

Pr−

cosθP ̃φ
ρrsinθ

Pθ−

1


rsinθ

∂p
∂ φ

,


∂Pr
∂ τ

+


1


ρ

(P·∇)Pr=ν∆Pr−

P ̃φ
ρrsinθ

∂Pr
∂ φ

+


2 P ̃φ
ρ αr

Pφ−

1


α

∂p
∂r

+β ρ

MbG
αr^2

T,


∂T


∂ τ

+


1


ρ

(P·∇)T=κ ̃∆T−

P ̃φ
ρrsinθ

∂T


∂ φ


1


ρ

dT ̃
dr

Pr,

divP= 0 ,

with the boundary conditions


(7.4.27) Pr= 0 , Pφ= 0 ,


∂Pθ
∂r
= 0 , T=0 atr=Rs,R 1.

2.Taylor instability.By the conservation of angular momentum andR 1 ≫Rs, the angular
momentumsΩ 0 andΩ 1 in (7.4.25) satisfy that


(7.4.28) Ω 0 ≫Ω 1 ,


This property leads to the instability of the rotating flow represented by the stationary solu-
tion:


(7.4.29) (Pr,Pθ,Pφ) = ( 0 , 0 ,P ̃φ),

Free download pdf