474 CHAPTER 7. ASTROPHYSICS AND COSMOLOGY
and byTμ ν=diag(c^2 ρ,g 11 p,g 22 p,g 33 p), we have
T 00 −
1
2
g 00 T=c^2
2(
ρ+3 p
c^2)
,
Tkk−1
2
gkkT=c^2
2
gkk(
ρ−p
c^2)
for 1≤k≤ 3 ,φ 00 −1
2
g 00 Φ=1
2 c^2(
φtt−3 Rt
Rφt)
,
φkk−1
2
gkkΦ=1
2 c^2gkk(
φtt+Rt
Rφt)
for 1≤k≤ 3.Thus, we derive from (7.6.4) two independent field equations as
R′′=−
4 πG
3(
ρ+3 p
c^2)
R−
1
6
φ′′R+1
2
(7.6.5) R′φ′,
R′′
R+ 2
(
R′
R
) 2
+
2 c^2
R^2
= 4 πG(
ρ−p
c^2)
+
1
2
φ′′+1
2
R′
R
(7.6.6) φ′.
We infer from (7.6.5) and (7.6.6) that
(7.6.7) (R′)^2 =
8 πG
3R^2 ρ+1
3
R^2 φ′′−c^2.By the Bianchi identity:∇μ(∇μ νφ+
8 πG
c^4Tμ ν) = 0 ,we deduce that
(7.6.8) φ′′′+
3 R′
R
φ′′=− 8 πG(
ρ′+3 R′
R
ρ+3 R′
R
p
c^2)
.
It is known that the energy densityρand the cosmic radiusR(also called the scale factor)
satisfy the relation:
(7.6.9) ρ=
ρ 0
R^3, ρ 0 the density atR= 1.Hence, it follows from (7.6.9) that
ρ′=− 3 ρR′/R.Thus, (7.6.8) is rewritten as
(7.6.10) φ′′′+
3 R′
R
φ′′=−24 πG
c^2R′
R
p.In addition, making the transformation(7.6.11) φ′′=
ψ
R^3