52 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF PHYSICS
Theorem 2.20(Lorentz Invariants).
1) The contractions(2.2.22) Aμ 1 ···μkBμ^1 ···μk,is a Lorentz invariant, and so are the following contractions:(2.2.23) gα βAαBβ, gα βAαBβ.2) Let Aμνbe a (1,1) Lorentz tensor, then the contraction(2.2.24) Aμμ=A^00 +A^11 +A^22 +A^33is a Lorentz invariant.3) The following differential operators(2.2.25)
Aμ∂μ=(
A 0
∂
∂x 0,A 1
∂
∂x 1,A 2
∂
∂x 2,A 3
∂
∂x 3)
,
Aμ∂μ=(
A^0
∂
∂x^0,A^1
∂
∂x^1,A^2
∂
∂x^2,A^3
∂
∂x^3)
,
∂μ∂μ=−1
c^2∂^2
∂t^2+
∂^2
∂x^21+
∂^2
∂x^22+
∂^2
∂x^23are Lorentz invariant operators.Theorem2.20provides a number of typical Lorentz invariants through contractions, and
in fact, all Lagrange actions in relativistic physics are combinations of the Lorentz invariants
in (2.2.22)-(2.2.25).
2.2.4 Relativistic mechanics
First, the 4-D velocity is defined by
uμ= (u^0 ,u^1 ,u^2 ,u^3 ) =(
dx^0
ds,
dx^1
ds,
dx^2
ds,
dx^3
ds)
,
wheredsis the arc-length element in (2.2.6), and is given by
ds=c√
1 −v^2 /c^2 dt, v= (v^1 ,v^2 ,v^3 ), vk=dxk
dt.
It is clear that the 4-D velocityuμcan be expressed as
(2.2.26)
uμ= (u^0 ,u^1 ,u^2 ,u^3 ),u^0 =1
√
1 −v^2 /c^2, uk=vk/c
√
1 −v^2 /c^2for 1≤k≤ 3.