66 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF PHYSICS
To solve this problem, as shown in (2.1.31), we need to add a termΓto the derivative
operator∂k, resulting a new derivative operator∇:
∇jAk=
∂Ak
∂xj
+ΓkijAi,
such that∇={∇j}is a tensor operator. Namely,{∇jAk}is a (1,1) type tensor, and transforms
as
(2.3.21) ∇ ̃jA ̃k=
∂A ̃k
∂ ̃xj
+ ̃ΓkijA ̃i=aklbij
(
∂Al
∂xi
+ΓlriAr
)
=aklbij∇iAl.
By (2.3.20), it follows from (2.3.21) that
(2.3.22) ̃ΓkijA ̃i=aklbijΓlriAr−bij
∂akl
∂xi
Al.
By (2.3.22) we deduce the transformation rule forΓas
(2.3.23) ̃Γkij=aklbribsjΓlrs−bribsj
∂akr
∂xs
.
Fortunately, for a Riemannian space{M,gij}, there exists a set of functions
(2.3.24) Γ={Γkij},
called the Levi-Civita connection, which satisfies the transformation given by (2.3.23), and
are given by
(2.3.25) Γkij=
1
2
gkl
(
∂gil
∂xj
+
∂gjl
∂xi
−
∂gij
∂xl
)
,
which we have seen in (2.3.7).
Based on the connection (2.3.24)-(2.3.25), we now define the covariant derivatives in the
Riemannian space{M,gij}as follows:
∇ku=
∂u
∂xk
for a scalar fieldu,
∇kuj=
∂uj
∂xk
+Γkljul for a vector field{uj},
∇kuj=
∂uj
∂xk
−Γlk jul for a covector field{uj},
and for a(r,s)type general tensor field{uij^11 ······irjs},
∇kuij^11 ······irjs=
∂uij^11 ······irjs
∂xk
(2.3.26) −Γlk j 1 uil j^12 ······irjs− ··· −Γlk jsuij^11 ······irjs− 1 l
+Γikl^1 ulij 12 ······jisr+···+Γiklruij^11 ······ijss−^1 l.