2.5. PRINCIPLE OF LAGRANGIAN DYNAMICS (PLD) 83
It is clear that
d
dλ∣
∣
∣
λ= 0L 2 (Aμ+λA ̃μ) =1
c∫QTd
dλ(Aμ+λA ̃μ)Jμdxdt=1
c∫QTJμA ̃μdxdt.We infer from (2.5.16) that
(2.5.17) δLμ 2 =
1
cJμ.Noting thatgμ ν=gν μ, we have
d
dλ∣
∣
∣
λ= 0L 1 (Aμ+λA ̃μ) =1
8 π∫QTgμ αgν βFα βd
dλ∣
∣
∣
λ= 0(Fμ ν+λF ̃μ ν)dxdt=
1
8 π∫QTgμ αgν βFα β(
∂A ̃μ
∂xν−
∂A ̃ν
∂xμ)
dxdtBy the Gauss formula,
∫QTgμ αgν βFα β∂A ̃μ
∂xνdxdt=−∫QTgμ αgν β∂Fα β
∂xνA ̃μdxdt,
∫QTgμ αgν βFα β∂A ̃ν
∂xμ
dxdt=−∫QTgμ αgν β∂Fα β
∂xμ
A ̃νdxdt=(by the permutation ofμandν)=−∫QTgν αgμ β∂Fα β
∂xνA ̃μdxdt=
∫QTgμ αgν β∂Fα β
∂xνA ̃μdxdt,where a permutation onαandβis performed, andFβ α=−Fα β.
Thus, we obtain that
d
dλ∣
∣
∣
λ= 0L 1 (Aμ+λA ̃μ) =−1
4 π∫QTgμ αgν β∂Fα β
∂xνA ̃μdxdt.We infer then from (2.5.16) that
(2.5.18) δL 1 =−
1
4 πgμ αgν β∂Fα β
∂xν=−
1
4 π∂Fμ ν
∂xν.
Hence it follows from (2.5.17) and (2.5.18) that
δL=−1
4 π∂Fμ ν
∂xν+
1
cJμ,which implies that the equationδL=0 takes the form:
(2.5.19)
∂Fμ ν
∂xν=
4 π
cJμ.