Mathematical Tools for Physics

(coco) #1
11—Numerical Analysis 317

− 3 k −k 0 k 3 k

f(k) =f(0) +kf′(0) +

1


2


k^2 f′′(0) +

1


6


k^3 f′′′(0) +···. (2)

I want to isolatef(0)from this, so take


f(k) +f(−k) = 2f(0) +k^2 f′′(0) +

1


12


k^4 f′′′′(0) +···

f(3k) +f(− 3 k) = 2f(0) + 9k^2 f′′(0) +

81


12


k^4 f′′′′(0) +···.

The biggest term after thef(0)is ink^2 f′′(0), so I’ll eliminate this.


[
f(3k) +f(− 3 k)

]


− 9


[


f(k)−f(−k)

]


≈− 16 f(0) +

[


81


12



9


12


]


k^4 f′′′′(0)

f(0)≈

1


16


[


−f(− 3 k) + 9f(−k) + 9f(k)−f(3k)

]



[



3


8


k^4 f′′′′(0)

]


. (3)


The error estimate is then− 3 h^4 f′′′′(0)/ 128.
To apply this, take the same example as before,f(x) = 2xatx=. 5


21 /^2 ≈


1


16


[


− 2 −^1 + 9. 20 + 9. 21 − 22


]


=


45


32


= 1. 40625 ,


and the error is 1. 40625 − 1 .41421 =−. 008 , a tenfold improvement over the previous interpolation despite the
fact that the function changes markedly in this interval and you shouldn’t expect interpolation to work very well
here.

Free download pdf