Mathematical Tools for Physics

(coco) #1
12—Tensors 365

The two expressions ( 19 ) and ( 20 ) represent the same thing, so equate the coefficients ofˆe 1 and ofˆe 2 :


T 11 +T 12 =T 11 ′ −T 21 ′
T 21 +T 22 =T 11 ′ +T 21 ′.

Solve these simultaneous equations forT 11 ′ andT 21 ′ get


T 11 ′ =


1


2


[


T 11 +T 12 +T 21 +T 22


]


=


3


2


, T 21 ′ =


1


2


[


T 21 +T 22 −T 11 −T 12


]


=


1


2


. (21)


Repeat the process for^11 T(ˆe′ 2 ):


1
1 T(ˆe


2 ) =

1
1 T

(


ˆe 2 −ˆe 1

2

)


=


1



2


[ 1


1 T(ˆe^2 )−

1
1 T(ˆe^1 )

]


=


1



2


[


T 12 ˆe 1 +T 22 ˆe 2 −T 11 ˆe 1 −T 21 ˆe 2

]


.


The left side of this is


T 12 ′ˆe′ 1 +T 22 ′ˆe′ 2 =

1



2


[


T 12 ′(ˆe 1 +ˆe 2 ) +T 22 ′(ˆe 2 −eˆ 1 )

]


.


Comparing coefficients, you have


T 12 −T 11 =T 12 ′ −T 22 ′ , T 22 −T 21 =T 12 ′ +T 22 ′.

Solve forT 12 ′ andT 22 ′:


T 12 ′ =


1


2


[


T 12 −T 11 +T 22 −T 21


]


=−


1


2


, T 22 ′ =


1


2


[


T 22 −T+ 21−T 12 +T 11


]


= +


1


2


.


So, the matrix of components in the primed basis is


(
T 11 ′ T 12 ′
T 21 ′ T 22 ′

)


=


(


3 / 2 − 1 / 2


1 /2 1/ 2


)


.

Free download pdf