13—Vector Calculus 2 401Example: IfF~=Axyxˆ+B(x^2 +L^2 )yˆ, what is the work done going from point(0,0)to(L,L)along the
three different paths indicated.?
∫C 1F~.d~r=∫
[Fxdx+Fydy] =∫L
0dx0 +∫L
0dy B 2 L^2 = 2BL^3
∫C 2F~.d~r=∫L
0dxAx^2 +∫L
0dy B(y^2 +L^2 ) =AL^3 /3 + 4BL^3 / 3
∫C 3F~.d~r=∫L
0dy B(0 +L^2 ) +∫L
0dxAxL=BL^3 +AL^3 / 232 1Gradient
What is the line integral of a gradient? Recall from section8.5and Eq. (8.10) thatdf= gradf.d~r. The integral
of the gradient is then ∫
2
1gradf.d~r=∫
df=f 2 −f 1 (11)where the indices represent the initial and final points. When you integrate a gradient, you need the function only
at its endpoints. The path doesn’t matter. See problem 19 for a caution.
13.3 Gauss’s Theorem
The original definition of the divergence of a vector field is Eq. (9.9),
div~v= lim
V→ 01
V
dV
dt= lim
V→ 01
V
∮
~v.dA~Fix a surface and evaluate the surface integral of~vover the surface.
∮
S~v.dA~dA~k
k′ˆnk′ ˆnk