15—Fourier Analysis 461∫∞
−∞dω
2 πe−iω(t−t′)−mω^2 −ibω+k=− 2 πi∑
ω±ResC 3C 4(15)
The denominator in Eq. ( 14 ) is−m(ω−ω+)(ω−ω−). Use this form to compute the residues. Leave the 1 / 2 π
aside for the moment and you have
e−iω(t−t′)−mω^2 −ibω+k=
e−iω(t−t′)−m(ω−ω+)(ω−ω−)The residues of this atω±are the coefficients of these first order poles.
atω+:e−iω+(t−t′)−m(ω+−ω−)and atω−:e−iω−(t−t′)−m(ω−−ω+)The explicit values ofω±are
ω+=−ib+√
−b^2 + 4km
2 mand ω−=−ib−√
−b^2 + 4km
2 mLet ω′=√
−b^2 + 4km
2 mand γ=b
2 mThe difference that appears in the preceding equation is then
ω+−ω−= (ω′−iγ)−(−ω′−iγ) = 2ω′