state from the^3 MLCT state (Scheme 2) and by using Eqs. (5)–(10)
as shown in Figs. 11 and 12.
kr¼
Fr
te
¼k^0 rexp
DE
RT
ð 5 Þ
ke¼
Fe
te
¼k^0 eexp
DE
RT
ð 6 Þ
k^0 d¼k^0
0
dexp
DE
RT
ð 7 Þ
Fe¼
ke
ðÞkeþkdþk^0 dþkr
ð 8 Þ
Fr¼
kr
ðÞkeþkdþk^0 dþkr
ð 9 Þ
te¼
1
ðÞkeþkdþk^0 dþkr
ð 10 Þ
The energy differences between the lowest excited^3 MLCT states
and the transition states of the photochemical ligand substitu-
tion reactions could be estimated from analysis of the tempera-
ture effects (Table IV). The evaluatedDG6¼values were found to
vary with the substituents on the bpy ligand (3650–4820 cm^1 ).
TABLE III
PHOTOPHYSICALPROPERTIES OF[Re(X 2 bpy)(CO) 3 (PR 3 )]þ( 3 )INCH 3 CNAT298 K.
[Re(X 2 bpy)
(CO) 3 (PR 3 )]þ
le(nm) E 00 (^3 MLCT)a
(cm^1 )
te(ns) Fe Fr
X PR 3
3a H P(OEt) 3 542 19,470 55 1034 0.155 0.089
3b CH 3 P(OEt) 3 533 19,637 50 936 0.175 0.16
3c CF 3 P(OEt) 3 623 17,272 49 162 0.031 0.0003
3d H P(n-Bu) 3 561 18,672 50 621 0.091 0.095
3e H PEt 3 561 18,649 51 654 0.153 0.15
3f H PPh 3 540 19,000 31 416 0.097 0.55
3g H P(OMe)
Ph 2
542 19,553 46 644 0.127 0.25
3h H P(Oi-Pr) 3 543 19,239 52 952 0.247 0.099
3i H P(OMe) 3 543 19,678 43 1076 0.216 0.118
a 0 – 0 band energy gap between the (^3) MLCT and the ground states.
RHENIUM(I) DIIMINE COMPLEXES 155