that are quantized. The mathematical analysis for solving the equation is
provided in Derivation box 11.1. The reader may skip to the main text
following the box, where detailed description of the solutions is given.224 PART 2 QUANTUM MECHANICS AND SPECTROSCOPY
Derivation box 11.1
Solving Schrödinger’s equation for the simple harmonic oscillatorTo solve this equation, we first rewrite it by letting:(db11.1)Substitution of yfor xyields:(db11.2)(db11.3)(db11.4)(db11.5)(db11.6)The expression can then be written in the simpler form of:(db11.7)d
d2
2(^20)
y
ψεψ() (yyy+−) ()=
Multiplication of this equation by yields:
−
2
2m 2
Zα−+=
Z^2
22
22
21
my 2yk
yyEy
αψαψψd
d() ( ) () ()
yx
xyy
xy xx=== =
ααd
dd
dd
dd
dandd
dd
dd
d1 2
(^2) xxy=
1
22
α^2d
dorNow, let:εα/
==⎛
⎝
⎜⎜
⎞
⎠
⎟⎟ =
222 2 ⎛
22m^212
EmE
mkEm
ZZ kZ
Z ⎝⎝
⎜⎜
⎞
⎠
⎟⎟ =
12
2/
E
Zω1
4
2422 1/
===⎛
⎝
⎜⎜
⎞
⎠
⎟⎟
mk
mk mkα
αα
ZZZ
then or44d
d2
22
24
2(^220)
y
y
m
Ey
mk
ψ yy
α
ψ
α
()+− =() ψ()
ZZ
d
d
2
2
2
2
2
2
2
2
2
2
yymk
yym
ψ Eyα
αψα
()−=( ) () −ψ(
ZZ