240 PART 2 QUANTUM MECHANICS AND SPECTROSCOPY
Substitution of this into the Schrödinger equation gives:(db12.6)Now, multiply by:r^2 /[R(r)Y(θ,φ)] (db12.7)The result is:(db12.8)The terms with the same variables are grouped, giving:(db12.9)The term in the first bracket depends only upon the variable r, whereas the second depends
only upon θand φ, so they must both be constants for the sum to always be a constant.
Let us define the separation constant as such that:(db12.10)Then the radial equation becomes:(db12.11)Angular solution
The angular part of the equation is:Λ^2 (θ,φ)Y(θ,φ) =−l(l+1)Y(θ,φ) (db12.12)We need to substitute the definition for Λ:(db12.13)11
22
sinθ^2 (,) sin sinδ
δφθφ
θδ
δθθδ
δθY +
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟YYllY(,)θφ=− +( 1 ) (,)θφ−
+
−
−+
ZZ^22
2202
24 mr
RrdrRr
drer
rE
()[()]
πε22
210
mll()+=Λ^2
1
(,) (,)
(,)
()
θφ θφ
θφY
Y
=− +ll−+
−
−
⎛
⎝
⎜⎜
Z^22
2202
24 mr
RrrRr
rer
Er
()δ[()]
δπε⎞⎞
⎠
⎟⎟−
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟=
(,)
(,) (,)
Z^22
2
1
mYY
θφΛ θφ θφ 00−+
Z^22
22
21
mr
RrrRr
rYY
()
[()]
(,)
(,)(,
δ
δθφΛφθφ θφ
πε)
⎧
⎨
⎪
⎩⎪
⎫
⎬
⎪
⎭⎪
+
−
=
er
Er202
4−+
Z^22
222
211
mY
rrRr
rRr
r(,) Y
[()]
θφ () ( , )
δ
δΛ θφ((,)θφ ()(,) (
πεθφ⎧
⎨
⎪
⎩⎪
⎫
⎬
⎪
⎭⎪
+
−
=
e
rRrYER2(^40)
rrY)(,)θφ