12.19 A wavefunction can have a node where the value is exactly equal
to zero. For the 2s orbital this occurs at:12.20Φ(φ+ 2 π) =Φ(φ)
Aeimlφ=Aeiml(φ+^2 π)=Aeimlφeiml^2 π
1 =eiml^2 π=cos(2πml) +isin(2πml)
with ml=0, ±1, ±2, ±3,....12.21
12.22
−Bsinθ(2sinθcosθ) + 2 Bcosθsin^2 θ= 0
0 = 012.23
The second term is zero since:This leaves the first term and:E
me
=−4
2
0
32 πεZ^2α
πε=
me
Z^22(^40)
re
mE
e
−−rre
⎛
⎝
⎜⎜
⎞
⎠
αααα⎟⎟+−+
πε2
2202
2
4
2
Z
mm
Z^20
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟=
αα
πε2 αα
2202
2
4
re eme
r−−rr−+ +Er⎛
⎝
⎜⎜
⎞
⎠
⎟⎟
Z
ee−αr= 0d
d2
22
rΠ()rreee=− −αα( −−ααrr+ )−α−αr=αrre−−ααrr− 2 αed
drΠ()rr e e=−( )α −−ααrr+−+=BBsinθ [sin ] cos sin
θθθθ
d
d(^2220)
sinθ [sin ( sin )] cos sin
θ
θθ θθ
d
d
−+BB 202 =
sinθ sin ( cos ) [ ( )
θθ
θθ
d
dd
dB
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
++11 1 ssin^2 θθ−= 00 ]( cos )Bd
dd
d2
22
φφ
φΦ()==( ( )Aim e φφ) Aim e( )
lim
l
llim =−m ()
l(^2) Φφ
d
d
d
φ d
φ
φ
Φ()==(Aeimφφ) A im e( )
l
llim
ψ
π
ρ ρ
200
3
0
3
(^14)
224
2
2
=−/ 0
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟ − =
Z
ae wheenρ= 4ANSWERS TO PROBLEMS 469
9781405124362_5_end.qxd 4/29/08 9:17 Page 469