Food Biochemistry and Food Processing

(Ben Green) #1
29 Biochemistry and Fermentation of Beer 683

tors. Applications of Cell Immobilisation Biotech-
nology. Dordrecht (The Netherlands): Kluwer Aca-
demic Publishers. (In press.)
Nedovic VA, Pesic R, Leskosek-Cukalovic I, Laketic
D, Vunjal-Novakovic G. 1997. Analysis of liquid
axial dispersion in an internal loop gas-lift bioreactor
for beer fermentation with immobilized yeast cells.
Proceedings 2nd European Conference on Fluidi-
zation, Bilbao, pp. 627–635.
Needleman RB, Kaback DB, Dubin RA, Perkins EL,
Rosenberg NG, Sutherland KA, Forrest DB, Michels
CA. 1984. MAL6of Saccharomyces: A complex
genetic locus containing three genes required for
maltose fermentation. Proc Natl Acad Sci USA
81:2811–2815.
Nehlin JO, Ronne H. 1990. Yeast MIG1repressor is
related to the mammalian early growth response and
Wilms’ tumour finger proteins. EMBO J 9:2891–
2898.
Nelissen B, Mordant P, Jonniaux J-J, De Wachter R,
Goffeau A. 1995. Phylogenetic classification of the
major superfamily of membrane transport facilita-
tors, as deduced from yeast genome sequencing.
FEBS Lett 377:232–236.
Nevoigt E, Pilger R, Mast-Gerlach E, Schmidt U,
Freihammer S, Eschenbrenner M, Garbe L, Stahl U.



  1. Genetic engineering of brewing yeast to re-
    duce the content of ethanol in beer. FEMS Yeast Res
    2:225–232.
    Nevoigt E, Stahl U. 1997. Reduced pyruvate decar-
    boxylase and increased glycerol-3-phosphate degy-
    drogenase [NAD] levels enhance glycerol produc-
    tion in Saccharomyces cerevisiae. Yeast 12:1331–


  2. Ni B, Needleman RB. 1990. Identification of the up-
    stream activating sequence of MALand the binding
    sites for MAL63 activator of Saccharomyces cere-
    visiae. Mol Cell Biol 10:3797–3800.
    N.N. 2000. Fermentation and Maturation, European
    Brewery Convention Manual of Good Practice. Nürn-
    berg (Germany): Getränke-Fachverlag Hans Carl.
    ———. 2002. België (bijna) tweede bier-exporteur van
    Europa. Het Brouwersblad, June, pp. 9–29.
    Nykänen L, Nykänen I. 1977. Production of esters by
    different yeast strains in sugar fermentations. J Inst
    Brew 83:30–31.
    Onnela M-L, Suihko M-L, Penttilä M, Keränen S.



  3. Use of a modified alcohol dehydrogenase,
    ADH1, promotor in construction of diacetyl non-
    producing brewer’s yeast. J Biotechnol 49:101–109.
    Oshita K, Kubota M, Uchida M, Ono M. 1995. Clar-
    ification of the relationship between fusel alcohol for-


mation and amino acid assimilation by brewing yeast
using^13 C-labeled amino acid. Proceedings of the Eu-
ropean Brewery Convention Congress, pp. 387–402.
Pajunen E. 1995. Immobilized yeast lager beer matura-
tion: DEAE-cellulose at Synebrychoff. In: EBC Mon-
ograph XXIV, EBC Symposium on Immobilized
Yeast Applications in the Brewing Industry, pp. 24–
40.
Pajunen, E., Grönqvist, A. 1994. Immobilized yeast
fermenters for continuous lager beer maturation.
Proceedings 23rd Convention Inst of Brew Australia
and New Zealand Section, Sydney, pp. 101–103.
Panchal CJ, Stewart GG. 1979. Utilization of wort car-
bohydrates. Brewers Digest (June): 36–46.
Peddie, H.A.B. 1990. Ester formation in brewery fer-
mentations. J Inst Brew 96:327–331.
Peinado JM, Loureiro-Dias MC. 1986. Reversible loss
of affinity induced by glucose in the maltose-H
symport of Saccharomyces cerevisiae. Biochim Bio-
phys Acta 856:189–192.
Petrik M, Käppeli O, Fiechter A. 1983. An expanded
concept for the glucose effect in the yeast Sacchar-
omyces uvarum: involvement of short- and long-
term regulation. J Gen Microbiol 129:43–49.
Pfisterer E, Stewart GG. 1975. Some aspects on the fer-
mentation of high gravity worts. Proceedings Eu-
ropean Brewery Convention Congress, pp. 255–267.
Pittner H, Back W, Swinkels W, Meersman E, Van
Dieren B, Lomni H. 1993. Continuous production of
acidified wort for alcohol-free-beer with immobi-
lized lactic acid bacteria. Proceedings European
Brewery Convention Congress, pp. 323–329.
Ramos-Jeunehomme C, Laub R, Masschelein CA.


  1. Proceedings European Brewery Convention
    Congress, pp. 513–519.
    ———. 1991. Why is ester formation in brewery fer-
    mentations yeast strain dependent? Proceedings Eu-
    ropean Brewery Convention Congress, pp. 257–264.
    Reed G, Nogodawithana TW. 1991. Chapter 3. In: Yeast
    Technology. New York: Van Nostrand Reinhold.
    Remize F, Roustan JL, Sablayrolles JM, Barre P, De-
    quin S. 1999. Glycerol overproduction by engi-
    neered Saccharomyces cerevisiaewine yeast strains
    leads to substantial changes in by-product formation
    and to stimulation of fermentation rate in stationary
    phase. Appl Environ Microbiol 65:143–149.
    Riballo E, Herweijer M, Wolf DH, Lagunas R. 1995.
    Catabolite inactivation of the yeast maltose trans-
    porter occurs in the vacuole after internalization by
    endocytosis. J Bacteriol 177:5622–5627.
    Rieger M, Käppeli O, Fiechter A. 1983. The role of
    limited respiration in the incomplete oxidation of

Free download pdf