DIFFERENTIAL GEOMETRY OF SURFACES 1716.2 Curves on a Surface
A curve c on a parametric surface r(u,v) may be expressed in terms of an additional parameter t as
c(t) = [u(t)v(t)]T by letting the parameters u and v as functions of t (Figure 6.7).
Figure 6.7 A curve c(t) on a parametric surfaceThe tangent to the curve is given byT
cr r
= rr A
(, )
=
(, )
+
(, )
= [ ] = =
du
dtu
udu
dtud
dtdu
dt
d
dtdu
dt
d
dtx
uxy
uy
uvvv
vv
vvvv∂
∂∂
∂⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥∂
∂∂
∂
∂
∂∂
∂∂
∂
∂∂
∂⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
v ⎥vv
z
uzdu
dt
d
dt(6.8a)
The differential arc length ds of the curve is given by
ds
du
dt
dt
du
dtd
dt
dt
du
dtd
dtdu
dtd
dt
= uuudt
(, )
= + = + +
c
rr rr rr
vvvv
vvv⎛
⎝⎞
⎠
⋅⎛
⎝⎞
⎠= [ ] =
du
dtd
dtdu
dt
d
dtdt
du
dtd
dtu
uuu u
uv
vv
vvv
vvv⎡
⎣⎢⎤
⎦⎥⎡
⎣
⎢⎤
⎦
⎥⋅⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥⎡
⎣⎢⎤
⎦⎥⋅⋅
⋅⋅⎡
⎣
⎢⎤
⎦r
rrrrr rr
rr rr⎥⎥⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥du
dt
d
dtdt
v=
du
dtd
dtdu
dt
d
dtdt
v
v⎡
⎣⎢⎤
⎦⎥⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥G (6.8b)where G
rr rr
rr rr= = AA = =
11 12
21 22uu u
uT GG
GGEF
FG⋅⋅
⋅⋅⎡
⎣⎢⎤
⎦⎥⎡
⎣⎢⎤
⎦⎥⎡
⎣⎢⎤
⎦⎥v
vvv(b)c(t)rv
Tds
rudurvdvruc(t)
PT
vrvru(a)uPn