184 COMPUTER AIDED ENGINEERING DESIGN
ruu= [–(1 –v)acosu]i–asinu (1 –v)j
ruv= [asinu– 2a/π]i–acosuj
rvv= 0All we need to show then is M≠ 0. From Eqs. (6.19) and (6.22)
Dxyz
xyz
xyzaua
auau
a
auaua
au
au buu
12 = uuu =sin –2- cos 0
- (1 – ) sin ( ) –
2
(1 – ) cos 0 - cos + –
2 - sin
vvuvvvvv
v
vπππ⎛
⎝⎞
⎠= (1 – ) cos sin –2- cos (1 – ) sin ( ) +
2
bauaua
au a ua
vvv
ππ⎛
⎝⎞
⎠⎛
⎝⎞
⎠⎧
⎨
⎩⎫
⎬
⎭=cos sin –2
cos – cos sin +2
cos – cos sin+ cos sin –2
cos22
22
222bauua
ua uua
ua u uauua
uπππvvvv⎧⎨⎪⎪⎩⎪
⎪⎫⎬⎪⎪⎭⎪
⎪=–2
cos2
ba
u
π⎧
⎨
⎩⎫
⎬
⎭
which is zero only when cos u = 0 or when u =^12 π. Since D 12 and hence M≠ 0 for other values of
u, the Gaussian curvature is not zero at all points on the surface. The toothpaste tube, therefore, is
non-developable and cannot be flattened without tearing or stretching.
Some other examples of ruled but non-developable surfaces are those of Plucker polar and hyperbolic
paraboloid surfaces shown in Figure 6.16. The respective equations are
r(u,v) = u cos vi+usinvj + sin nvk (n is an integer ≥ 2)r(u,v) = ui + vj + uvkFigure 6.15 A symmetric half of the toothpaste tube