DESIGN OF SURFACES 225To construct a bi-linear Coon’s patch, the four boundary curves are given by
ar
r
r
rar
r
r
r0
3200
01
02
031
3220
21
22
23() = [ 1]–1 3 –3 1
3–6 30
–3 3 0 0
1000, ( ) = [ 1]–1 3 –3 1
3–6 30
–3 3 0 0
1000vvvvvvvv⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥⎡⎣⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥br
r
r
rbr
r
r
r0 3230
31
32
331 3210
11
12
13() = [ 1]–1 3 –3 1
3–6 30
–3 3 0 0
1000, ( ) = [ 1]–1 3 –3 1
3–6 30
–3 3 0 0
1000uuuu uuuu⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥⎡⎣⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥which can be used directly with Eq. (7.38). Stepwise results are shown in Figure 7.16.
0.4
0.3
0.2
0.1
0
1.5
1
0.5
0 0 0.511.50.4
0.3
0.2
0.1
0
1.5 1
0.5
0 0 0.51 1.50.4
0.3
0.2
0.1
0
1.5
1
0.5
0 0 0.511.5(a) Bézier boundary curves(b)r 1 (u,v) (c)r 2 (u,v)Figure 7.16 Bilinear Coon’s patch in Example 7.80.4
0.3
0.2
0.1
0
1.5 1
0.5
0 0 0.511.50.4
0.3
0.2
0.1
0
1.5 1
0.5
0 0 0.51 1.5(d)r 3 (u,v) (e) Final patch r 1 (u,v) + r 2 (u,v)–r 3 (u,v)