326 COMPUTER AIDED ENGINEERING DESIGN
Note that the interpolation above is equally biased along the x and y directions. To determine the
coefficients a 0 ,a 1 and a 2 , we need to solve
ui = a 0 + a 1 xi + a 2 yi
uj = a 0 + a 1 xj + a 2 yj
uk = a 0 + a 1 xk + a 2 yk (11.10b)
to get
auxy xy u xy yx u xy xy
xxyy xxyyijkkjjk i k i k ij ji
jik j k jj i
0 =( – ) + ( – ) + ( – )
( – )( – ) – ( – )( – )auy y u y y uy y
xxyy xxyyijk j k i k ij
jik j k jj i
1 =( – ) + ( – ) + ( – )
( – )( – ) – ( – )( – ) (11.10c)aux x u x x u x x
xxyy xxyyi k jjikkji
jik j k jj i
2 =( – ) + ( – ) + ( – )
( – )( – ) – ( – )( – )and thus
uxy y x y y x y y
xy y x y y x y yuxy y xy y x y y
xj k j kkj
ijk j k i k ij
i
i kki k i
i=( – ) + ( – ) + ( – )
( – ) + ( – ) + ( – ) +( – ) + ( – ) + ( – )
(yyy xyy xyyj – ) + k j( – ) + k i k( – )ijuj+( – ) + ( – ) + ( – )
( – ) + ( – ) + ( – )xy y xy y xy y
xy y x y y x y y
u
ij j i i j
ij k j k i k ij
k (11.10d)or u
A
A
u
A
A
u
A
Ai i u N xyu N xyu N xyu
j
j
k
= + + k = iij j( , ) + ( , ) + kk( , ) (11.10e)whereAi,Aj and Ak are the triangular areas shown in Figure 11.12 and A is the area of the triangular
element (A = Ai +Aj + Ak). Note that for P in the interior of the triangle, the shape functions Ni(x,y)
Figure 11.12 A triangular elementyxi
jui, fixvi, fiyAk
uj, fjxvj, fjyAiAj Pk uk, fkxvk, fky