DIFFERENTIAL GEOMETRY OF CURVES 79From Eq. (3.23), T
r
=ds()
ds
so thatd
duds
dur
= T using chain rule. Differentiating further givesd
dud
duds
duds
du2
22
= + 2
r T TImplementing the above result in Eq. (3.29) yields
QP QW TT
TTTT= += =2
232
33
3××⎛
⎝⎜⎞
⎠⎟⎡⎣⎢⎤⎦⎥× ⎛
⎝⎞
⎠⎡⎣⎢
⎢⎤⎦⎥
⎥× ⎛
⎝⎞
⎠⎡⎣⎢
⎢⎤⎦⎥
⎥ds
dud
duds
duds
duud
duds
du
ud
dsds
du
uΔΔΔTUsing Eqs. (3.26) and (3.27), we get
QP QW = T N = B3
33
××⎛^3
⎝⎞
⎠⎡⎣⎢
⎢⎤⎦⎥
⎥⎛
⎝⎞
⎠⎡⎣⎢
⎢⎤⎦⎥
⎥κκ
ds
du
u
ds
du
ΔΔu (3.30a)From Eqs. (3.29) and (3.30a)
d
dud
duds
dur r
= B2
23
×⎡
⎣⎢⎤
⎦⎥⎛
⎝⎞
⎠⎡⎣⎢
⎢⎤⎦⎥
⎥κ (3.30b)From Eq. (3.30a), QP×QW is parallel to B implying that if a circle is drawn through P,Q and W,
the normal to the plane containing the circle would be parallel to B, that is, the circle would be
contained in the osculating plane for which reason it is termed as the osculating circle (Figure 3.8).
From vector algebra, the radius of curvature ρ at P is given as
ρ =
| || || – |
2| |
=
| || || – |
2 | ( – ) |
=
| || || – |
2| |WP WQ WP WQ
WP WQWP WQ WP WQ
WQ PQ WQWP WQ WP WQ
×××PQ WQor ρ =
+^1
2
+... 2 +... –^1
2
+...22
22
2
222
23ΔΔΔΔΔΔud
dud
duuud
du
ud
dud
duud
dud
duur r rrrr r
×=332
23Δu
d
du
d
dud
duurrr
× Δor using Eq. (3.30b)