228 Molecular dynamics simulations
First we derive the equations of motion in the usual way:
dri
dt
=
∂H
∂pi
=
pi
ms^2
(8.83a)
ds
dt
=
∂H
∂ps
=
ps
Q
(8.83b)
dpi
dt
=−
∂H
∂ri
=−∇iU(R)=−
∑
i<j
∇iU(ri−rj) (8.83c)
dps
dt
=−
∂H
∂s
=
(∑
ip
2
i
ms^2
−gkBT
)/
s. (8.83d)
We have used the notation∂H/∂pi=∇piH, etc. The partition function of the total
system (i.e. including heat bath degree of freedoms) is given by the expression:
Z=
1
N!
∫
dps
∫
ds
∫
dP
∫
dR
×δ
∑
i
p^2 i
2 ms^2
+
1
2
∑
ij,i=j
U(rij)+
p^2 s
2 Q
+gkBTln(s)−E
. (8.84)
Integrations
∫
dRand
∫
dPare over all position and momentum degrees of freedom.
We now rescale the momentapi:
pi
s
=p′i, (8.85)
so that we can rewrite the partition function as
Z=
1
N!
∫
dps
∫
ds
∫
dP′
∫
dR
×s^3 Nδ
∑
i
p′^2 i
2 m
+
1
2
∑
ij,i=j
U(rij)+
p^2 s
2 Q
+gkBTln(s)−E
. (8.86)
We define the HamiltonianH 0 in terms ofRandP′as
H 0 =
∑
i
p′^2 i
2 m
+
1
2
∑
ij,i=j
U(rij). (8.87)