Computational Physics

(Rick Simeone) #1

228 Molecular dynamics simulations


First we derive the equations of motion in the usual way:

dri
dt

=


∂H


∂pi

=


pi
ms^2

(8.83a)

ds
dt

=


∂H


∂ps

=


ps
Q

(8.83b)

dpi
dt

=−


∂H


∂ri

=−∇iU(R)=−


i<j

∇iU(ri−rj) (8.83c)

dps
dt

=−


∂H


∂s

=


(∑


ip
2
i
ms^2

−gkBT

)/


s. (8.83d)

We have used the notation∂H/∂pi=∇piH, etc. The partition function of the total
system (i.e. including heat bath degree of freedoms) is given by the expression:


Z=


1


N!



dps


ds


dP


dR

×δ




i

p^2 i
2 ms^2

+


1


2



ij,i=j

U(rij)+

p^2 s
2 Q
+gkBTln(s)−E


. (8.84)


Integrations



dRand


dPare over all position and momentum degrees of freedom.
We now rescale the momentapi:


pi
s

=p′i, (8.85)

so that we can rewrite the partition function as


Z=


1


N!



dps


ds


dP′


dR

×s^3 Nδ




i

p′^2 i
2 m

+


1


2



ij,i=j

U(rij)+

p^2 s
2 Q

+gkBTln(s)−E


. (8.86)


We define the HamiltonianH 0 in terms ofRandP′as


H 0 =



i

p′^2 i
2 m

+


1


2



ij,i=j

U(rij). (8.87)
Free download pdf