9.3 An example: quantum molecular dynamics for the hydrogen molecule 275
Taking the derivative with respect toXwe find
d
dX
〈1s,α,A
∣∣
∣∣−^1
2
∇^2
∣∣
∣∣1s,β,B〉
=− 4 σ^2 XSα,A;β,B+[ 3 σ− 2 σ^2 X^2 ]
d
dX
Sα,A;β,B. (9.36)
The Coulomb matrix element is given by
〈1s,α,A
∣∣
∣∣
∣
∑
c
1
rc
∣∣
∣∣
∣
1s,β,B〉=θ
∑
c
Sα,A;β,BF 0 (tc) (9.37)
withθ= 2
√
(α+β)/π,tc=(α+β)(PC)^2 wherePis the point
RP=
αRA+βRB
α+β
, (9.38)
PQ=RP−RQ, andCis the position of the nucleus. The sum
∑
cis over the two
nuclei.F 0 was given inSection 4.8– its derivative is given by
F 0 ′(t)=
e−t−F 0 (t)
2 t
(9.39)
fort =0, andF 0 ′( 0 )=− 1 /3. Taking the derivative, we obtain for two basis
functions centred on the same nucleus:
d
dX
〈1s,α,A
∣∣
∣∣
∣
∑
c
1
rc
∣∣
∣∣
∣
1s,β,B〉= 2 θSα,A;β,BF 0 ′(t)X(α+β) (9.40)
witht=(α+β)X.
For basis functions centred on different nuclei, we have
d
dX
〈1s,α,A
∣∣
∣∣
∣
∑
c
1
rc
∣∣
∣∣
∣
1s,β,B〉=θ
d
dX
(Sα,A;β,B)
∑
c
[F 0 (t 1 )+F 0 (t 2 )]
+ 2
θ
α+β
Sα,A;β,B[F 0 ′(t 1 )α^2 +F 0 ′(t 2 )β^2 ]X. (9.41)
where
t 1 =
α^2 X^2
α+β
; (9.42a)
t 2 =
β^2 X^2
α+β
. (9.42b)
Finally the four-electron matrix element is given by
〈α,A;γ,C|g|β,B;δ,D〉=ρSα,A;β,BSγ,C;δ,DF 0 (t) (9.43)