Computational Physics

(Rick Simeone) #1

370 Transfer matrix and diagonalisation of spin chains


References


[1] H. W. J. Blöte and M. P. Nightingale, ‘Critical behaviour of the two-dimensional Potts model
with a continuous number of states: a finite size scaling analysis,’Physica,A 112(1982), 405–65.
[2] F. R. Gantmacher,The Theory of Matrices, vol. II. New York, Chelsea, 1959.
[3] H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, ‘Conformal invariance, the central charge,
and universal finite size amplitudes at criticality,’Phys. Rev. Lett., 56 (1986), 742–5.
[4] J. Cardy, ‘Conformal invariance,’ inPhase Transitions and Critical Phenomena, vol. 11
(C. Domb and J. Lebowitz, eds.) London, Academic Press, 1987, pp. 55–126.
[5] M. Krech and D. P. Landau, ‘Casimir effect in critical systems: a Monte Carlo simulation,’Phys.
Rev. E, 53 (1996), 4414–23.
[6] R. J. Baxter,Exactly Solved Models in Statistical Mechanics. London, Academic Press, 1982.
[7] M. P. M. den Nijs, ‘Extended scaling relations for the magnetic critical exponents of the Potts-
model,’Phys. Rev. B, 27 (1983), 1674–9.
[8] M. P. Nightingale, ‘Scaling theory and finite systems,’Physica,A83(1976), 561–72.
[9] R. J. Baxter, S. B. Kelland, and F. Y. Wu, ‘Equivalence of the Potts model or Whitney polynomial
with an ice-type model,’J. Phys. A, 9 (1976), 397–406.
[10] B. Nienhuis, ‘Coulomb gas formulation of two-dimensional phase transitions,’Phase Transitions
and Critical Phenomena, vol. 11 (C. Domb and J. Lebowitz, eds.) London, Academic Press,
1987, 1–53.
[11] E. H. Lieb, ‘Exact solution of the F model of an antiferroelectric,’Phys. Rev. Lett., 18 (1967),
1046–8.
[12] M. P. Nightingale and H. W. J. Blöte, ‘Monte Carlo calculation for the free energy, critical point
and surface critical behaviour of three-dimensional Heisenberg ferromagnets,’Phys. Rev. Lett.,
60 (1988), 1562–5.
[13] A. N. Vasil’ev, L. A. Ponomarenko, H. Manaka,et al.‘Magnetic and resonant properties of
quasi-one-dimensional antiferromagnet LiCuVO 4 ,’Phys. Rev. B, 64 (2004), 024419.
[14] R. M. Noack and S. R. Manmana, ‘Diagonalization- and numerical renormalization-group-
based methods for interacting quantum systems,’ inProceedings of the IX Training Course in
the Physics of Correlated Electron Systems and High-Tc Superconductors, 2004,AIP Conf.
Proc.vol. 78. New York, American Institute of Physics, 2005, pp. 93–163.
[15] P. Fulde,Electron correlations in Molecules and Solids, 3rd edn. Heidelberg, Springer, 1995.
[16] E. H. Lieb, T. Shultz, and D. Mattis, ‘Two soluble models of an antiferromagnetic chain,’Ann.
Phys., 16 (1961), 407–66.
[17] F. D. M. Haldane, ‘Nonlinear field theory of large-spin Heisenberg antiferromagnets: semi-
classically quantized solitons of the one-dimensional easy-axis Néel state,’Phys. Rev. Lett., 50
(1983), 1153–6.
[18] S. R. White, ‘Density matrix formulation for quantum renormalization groups,’Phys. Rev. Lett.,
69 (1992), 2863–6.
[19] N. G. van Kampen,Stochastic Processes in Physics and Chemistry. Amsterdam, North-Holland,
1981.
[20] H. W. Blöte, ‘The specific heat of magnetic linear chains,’Physica,79B(1975), 427–66.
[21] A. L. Malvezzi, ‘An introduction to numerical methods in low-dimensional quantum systems,’
Braz. J. Phys., 33 (2003), 55–72.
[22] K. G. Wilson, ‘The renormalization group: critical phenomena and the Kondo problem,’Rev.
Mod. Phys., 47 (1975), 773–840.
[23] S. R. White and R. M. Noack, ‘Real-space quantum renormalization groups,’Phys. Rev. Lett.,
68 (1992), 3487–90.
[24] ALPS (Algorithms and Libraries for Physics Simulations) homepage.http://alps.comp-
phys.org/.

Free download pdf