536 Computational methods for lattice field theories
rectangular Wilson loop. The Wilson loop correlation function is defined as
W(C)=
∫ 2 π
0
∏
n,μdθμ(n)e
βcos
[∑
n;μνθμν(n)
]
ei
∑
(n,μ)Cθμ(n)
∫ 2 π
0
∏
n,μdθμ(n)e
βcos
[∑
n;μνθμν(n)
].
A plaquette sum over theθangles for a plaquette with lower-left corner atnreduces
in the temporal gauge to:
◦
∑
n;μν
θμν(n)=θ 1 (n 0 ,n 1 )−θ 1 (n 0 +1,n 1 ).
(a) Show that in the temporal gauge the Wilson loop sum can be written as
∑
(n,μ)C
θμ(n)=
∑
(n;μν)A
◦
∑
n;μν
θμν(n)
whereAis the area covered by the plaquettes enclosed by the Wilson loop.
(b) Use this to show that the Wilson loop correlation function factorises into a
product of plaquette-terms. Defining
θP(n)=◦
∑
n;μν
θμν(n),
wherePdenotes the plaquettes, we can write:
W(C)=
∫∏
∫P∏dθPexp[βcosθP+iθP]
PdθPexp[βcosθP]
(c) Show that this leads to the final result:
W(C)=
[
I 1 (β)
I 0 (β)
]A
whereIn(x)is the modified Bessel function andAis the area enclosed by the
Wilson loop.
References
[1] R. Balian and J. Zinn-Justin, eds.,Méthodes en théorie des champs / Methods in Field Theory,
Les Houches Summer School Proceedings, vol. XXVIII. Amsterdam, North-Holland, 1975.
[2] C. Itzykson and J.-B. Zuber,Quantum Field Theory. New York, McGraw-Hill, 1980.
[3] S. Weinberg,The Quantum Theory of Fields, vols. 1 and 2. Cambridge, Cambridge University
Press, 1995.
[4] D. Bailin and A. Love,Introduction to Gauge Field Theory. Bristol, Adam Hilger, 1986.
[5] J. Zinn-Justin,Quantum Field Theory and Critical Phenomena, 3rd edn. New York, Oxford
University Press, 1996.
[6] M. Creutz,Quarks, Gluons and Lattices. Cambridge, Cambridge University Press, 1983.
[7] M. Lüscher and P. Weisz, ‘Scaling laws and triviality bounds in the lattice-φ^4 theory. 1. One-
component model in the symmetric phase,’Nucl. Phys. B, 290 (1987), 25–60.
[8] M. Lüscher, ‘Volume dependence of the energy spectrum in massive quantum field theories (I).
Stable particle states,’Commun. Math. Phys., 104 (1986), 177–206.