Computational Physics

(Rick Simeone) #1

538 Computational methods for lattice field theories


[35] C. Dress and W. Krauth, ‘Cluster algorithm for hard spheres and related systems,’J. Phys. A,
28 (1995), L597–601.
[36] J. Liu and E. Luijten, ‘Rejection-free geometric cluster algorithm for complex fluids,’Phys. Rev.
Lett., 92 (2004), 035504.
[37] J. R. Heringa and H. W. J. Blöte, ‘Geometric cluster Monte Carlo simulation,’Phys. Rev. E, 57
(1998), 4976–8.
[38] J. D. Jackson,Classical Electrodynamics, 2nd edn. New York, John Wiley, 1974.
[39] J. W. Negele and H. Orland,Quantum Many-particle Systems. Frontiers in Physics, Redwood
City, Addison-Wesley, 1988.
[40] F. Wegner, ‘Duality in generalized Ising models and phase transitions without local order
parameters,’J. Math. Phys., 12 (1971), 2259–72.
[41] K. G. Wilson, ‘Confinement of quarks,’Phys. Rev. D, 10 (1974), 2445–59.
[42] J. B. Kogut, ‘An introduction to lattice gauge theory and spin systems,’Rev. Mod. Phys., 51
(1979), 659–713.
[43] H. J. Rothe,Lattice Gauge Theories: An Introduction. Singapore, World Scientific, 1992.
[44] A. H. Guth, ‘Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge
theory,’Phys. Rev. D, 21 (1980), 2291–307.
[45] J. B. Kogut, ‘The lattice gauge theory approach to quantum chromodynamics,’Rev. Mod. Phys.,
55 (1983), 775–836.
[46] H. B. Nielsen and M. Ninomiya, ‘Absence of neutrinos on a lattice. 1. Proof by homotopy theory,’
Nucl. Phys. B, 185 (1981), 20–40.
[47] J. B. Kogut and L. Susskind, ‘Hamiltonian form of Wilson’s lattice gauge theories,’Phys. Rev.
D, 11 (1975), 395–408.
[48] T. J. Banks, R. Myerson, and J. B. Kogut, ‘Phase transitions in Abelian lattice gauge theories,’
Nucl. Phys. B, 129 (1977), 493–510.
[49] J. Kuti, ‘Lattice field theories and dynamical fermions,’ inComputational Physics. Proceedings
of the 32nd Scottish University Summer School in Physics(R. D. Kenway and G. S. Pawley,
eds.). Nato ASI, 1987, pp. 311–78.
[50] F. Fucito and G. Marinari, ‘A stochastic approach to simulations of fermionic systems,’Nucl.
Phys. B, 190 (1981), 266–78.
[51] G. Bahnot, U. M. Heller, and I. O. Stamatescu, ‘A new method for fermion Monte Carlo,’Phys.
Lett. B, 129 (1983), 440–4.
[52] J. Polonyi and H. W. Wyld, ‘Microcanonical simulation of fermion systems,’Phys. Rev. Lett.,
51 (1983), 2257–60.
[53] O. Martin and S. Otto, ‘Reducing the number of flavors in the microcanonical method,’Phys.
Rev. D, 31 (1985), 435–7.
[54] S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L. Sugar, ‘Hybrid molecular dynamics
algorithm for the numerical simulation of quantum chromodynamics,’Phys. Rev. D, 35 (1988),
2531–42.
[55] D. J. Gross and F. Wilczek, ‘Ultra-violet behavior of non-abelian gauge theories,’Phys. Rev.
Lett., 30 (1973), 1343–6.
[56] H. D. Politzer, ‘Reliable perturbation results for strong interactions,’Phys. Rev. Lett., 30 (1973),
1346–9.
[57] S. Naik, ‘On-shell improved action for QCD with Susskind fermions and the asymptotic freedom
scale,’Nucl. Phys. B, 316 (1989), 238–68.
[58] G. P. Lepage, ‘Flavor-symmetry restoration and Szymanzik improvement for staggered quarks,’
Phys. Rev. D, 59 (1999), 074502.
[59] C. T. H. Davies and G. P. Lepage, ‘Lattice QCD meets experiment in hadron physics.’
hep-lat/0311041, 2003.

Free download pdf