Computational Physics

(Rick Simeone) #1

618 Index


multigrid method, 355 , 481 , 504 , 588 – 591 , 604
multigrid Monte Carlo (MGMC) method, 504


Navier–Stokes equations,seefluid dynamics,
448
nearly free electron (NFE) approximation, 127
Newton–Raphson method, 559 , 560
nitrogen molecule,seemolecular dynamics
(MD), 234
non-equilibrium molecular dynamics (NEMD),
seemolecular dynamics (MD), 251
Norman–Filinov method,seeMonte Carlo
(MC), 334
Nosé–Hoover method,seemolecular dynamics,
224
nuclear attraction integral,seeHartree-Fock, 74
number operator, 410 , 411 , 470
numerical quadrature, 566
Numerov integration method, 21
NVE,seeensemble theory, 200
(NVT),seeensemble theory, 299


open-shell, 61 , 62 , 96
orbitals, 43 , 62 , 63 , 65 – 69 , 80 , 82 , 85 , 89 , 90 ,
96 , 101 , 102 , 104 , 107 – 109 , 115 , 126 ,
131 , 133 , 151 , 268 , 270 , 274 , 279 – 286 ,
288 , 289 , 377
order parameter, 184 – 186
ordinary differential equations, 6 , 211 , 570 , 571 ,
576
orthogonality hole,seeband structure
calculations, 149
overlap integral,seeHartree-Fock, 73
overlap matrix,seeeigenvalue problem, 61


Padé–Jastrow wave functions,seetrail wave
function, 379
pair correlation function, 3 , 178 , 187 , 207 , 208 ,
210 , 309 , 339 , 552
parallelism, 540 , 541 , 552
partial constraints,seemolecular dynamics
(MD), 240
partial differential equations, 5 , 7 , 423 , 448 ,
579 , 594 , 599
particle–mesh (PM) method,seemolecular
dynamics (MD), 245
particle–particle (PP) method,seemolecular
dynamics (MD), 244
particle–particle/particle–mesh (P^3 M) method,
seemolecular dynamics (MD), 245
partition function,seeensemble theory, 228


path-integral formalism, 400 , 402 , 405 , 467 ,
468 , 512 , 514 , 521 , 523 , 525 , 526 , 533 ,
534
peer-to-peer model, 551
Peierls domain wall arguement, 183
periodic boundary conditions (PBC), 124 , 125 ,
180 , 199 , 202 , 203 , 208 , 209 , 241 , 252 ,
255 , 288 , 309 , 339 , 341 , 343 , 347 , 399 ,
400 , 404 , 405 , 443 , 547 , 584 , 587 , 604
perturbation theory, 9 , 106 , 474 , 517 , 528
Löwdin perturbation theory, 39
phase shift,seequantum scattering, 17 – 19 , 22 ,
26 – 28 , 145 , 146 , 149
phase space, 169 , 171 , 175 , 176 , 197 , 200 ,
215 – 219 , 221 , 225 , 230 , 232 , 299 , 317 ,
318 , 325 , 328 , 329 , 449 , 487 , 490 , 507 ,
552 , 573
phase transition, 176 , 180 , 182 , 184 – 187 , 207 ,
210 , 305 , 307 , 492 , 531 , 552
critical, 186 – 188 , 327
critical slowing down, 476 , 492 , 496 , 504 ,
506 , 508
finite-size scaling, 476
scaling laws, 536
universality
critical exponent, 188 – 190 , 307 , 346 , 348 ,
355 , 476 , 491 , 492 , 501 , 502
universality, 188 , 319
first order, 184 , 186 , 305 , 306
Kosterlitz–Thouless (KT) transition, 415 ,
502 , 532
phonons, 469
pipelining, 540 , 541 , 556
pivoting, 593
Poincaré invariants, 215 , 219
Poincaré time, 200 , 214
Poisson’s equation, 111 , 112 , 163 , 244 , 481 ,
505 , 586 , 590 , 591 , 604
polarisation orbitals,seebasis sets, 69
polymers, 247 , 319 – 322 , 324
Pople–Nesbet equations,seeHartree-Fock, 64
potential surface, 263
Potts model, 348 , 492 , 502
predictor-corrector methods, 578 , 579
processor efficiency, 548
propagator, 508 , 510 , 521 , 522
pruned-enriched Rosenbluth method (PERM),
seeMonte Carlo (MC), 322
pseudo-random numbers, 605 , 606
pseudopotential,seeband structure calculations,
39

quantum chromodynamics (QCD) and quarks
asymptotic freedom, 528 , 531
Free download pdf