Advanced Mathematics and Numerical Modeling of IoT

(lily) #1
0.000140

0.000138

0.000136

0.000134

0.000132

0.000130

0.000128

0.000126

Fitness

Generation

04080 120 160 200 240 280

Fitness
(a)

0.000140

0.000138

0.000136

0.000134

0.000132

0.000130

0.000128

0.000126

Fitness

Generation
Fitness

0 20 40 60 80 100 120 140

(b)

Figure 5: Evolutionary curve of E2 (left) and E3 (right).

2000

1500

1000

500

0

−500

200

150

100

50

0

−50

450
400
350
300
250
200
150
100
50

30

20

10

80 130 160 280 330

F F HH

0.0 0.0 0.0 0.0
460

−1.3 550
690

1.01.0
266400 1100

19.4 2100 −6.3 850 6.7 950 5.2 1550 1950 −6.2 3200 2.5 1200 1.2 1450 2300 −1.2 3.5 1200 1450

0 12345 678 910111213 14 15 16

350

17 18 19 20 21 22

0.0

(A) (km/h) (min)

Cross-sectionalview
Longitudinal
Curve

view

Speed
Electric current

Speed limit
Power

R400
L125

R460
L461

R800
L1000

R9000 R4500
L1000

R10000
L549

R4000
L4719

R3500
L653 L526

Figure 6: Result of normal specified time running strategy.

Table 3: Railways line parameters and units.

Distance Gradient Altitude Slope
length


Curve
position

Curve
radius

Curve
length

Station Speed
limit

Tunnel
position

Bridge
position

Others

km ‰ m mkmm mkm km/h km km —


Table 4: Comparison of running results.

Rail line Section length Running strategy Time set Actual running time Energy consumption


Beijing-Langfang 59.5 km Fastest — 16 min 32 s 3957.7 kwh
Beijing-Langfang with SGA 59.5 km Specified time 20 min 00 s 19 min 59 s 3252.4 kwh


Beijing-Langfang with PMPGA 59.5 km Specified time with GA 20 min 00 s 20 min 00 s 3247.2 kwh

Free download pdf