Time Value of Money 53Future Value, FVAn= A(1 + r)n–1 + A(1 + r)n–2 + ··· + A (2A)
Multiply both sides of the equation by (1 + r):FVAn(1 + r)= A(1 + r)n + A(1 + r)n–1 + ··· + A(1 + r) (2B)Subtract equation (2A) from (2B):FVAn. r= A(1 + r)n – A
FVAn. r= A[(1 + r)n – 1]FVAn. r= ⎥
⎦⎤
⎢
⎣
⎡ −+
rrn 1)1(
ADerivation of Present Value of an Annuity (Cash flows occur at the end of the period):
PVAn = n
rA
rA
rA
(^2) + )1()1()1(
++
+
+
+
··· (2C)
Multiply both sides of the equation by (1 + r):PVAn(1 + r) = 1
)1()1((^) −
++
+
+ n
rA
rA
A ··· (2D)
Subtract equation (2C) from (2D):PVAn. r= n
rA
A
)1(
+
−
PVAn. r= ⎥
⎦⎤
⎢
⎣
⎡
+
− n
r)1(1
A 1
PVAn. r= ⎥
⎦⎤
⎢
⎣
⎡
+
−+
nnrr
A
)1(1)1(
PVAn. r= ⎥
⎦⎤
⎢
⎣
⎡
+
−+
r.)r1(1)r1(
A nn