4.7Covariance and Variance of Sums of Random Variables 123
ProofCov
∑ni= 1Xi,∑mj= 1Yj
=∑ni= 1Cov
Xi,∑mj= 1Yj
from Equation 4.7.5=∑ni= 1Cov
∑mj= 1Yj,Xi
by the symmetry property Equation 4.7.2=∑ni= 1∑mj= 1Cov(Yj,Xi) again from Equation 4.7.5and the result now follows by again applying the property Equation 4.7.2.
Using Equation 4.7.3 gives rise to the following formula for the variance of a sum of
random variables.
Corollary 4.7.3Var( n
∑i= 1Xi)
=∑ni= 1Var(Xi)+∑ni= 1∑nj= 1
j=iCov(Xi,Xj)ProofThe proof follows directly from Proposition 4.7.2 upon settingm=n, andYj=Xjfor
j=1,...,n.
In the case ofn=2, Corollary 4.7.3 yields thatVar(X+Y)=Var(X)+Var(Y)+Cov(X,Y)+Cov(Y,X)or, using Equation 4.7.2,
Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y) (4.7.6)Theorem 4.7.4IfXandYare independent random variables, then
Cov(X,Y)= 0