5.4The Uniform Random Variable 167
Because
1 =∫Rf(x,y)dx dy=∫Rcdxdy=c×Area ofRit follows that
c=1
Area ofRFor any regionA⊂R,
P{(X,Y)∈A}=∫∫(x,y)∈Af(x,y)dx dy=∫∫(x,y)∈Acdxdy=Area ofA
Area ofRSuppose now thatX,Yis uniformly distributed over the following rectangular regionR:
0, b a, b0, 0 a, 0RIts joint density function is
f(x,y)={
c if 0≤x≤a,0≤y≤b
0 otherwisewherec=Area of rectangle^1 =ab^1. In this case,XandYare independent uniform random
variables. To show this, note that for 0≤x≤a,0≤y≤b
P{X≤x,Y≤y}=c∫x0∫y0dy dx=xy
ab(5.4.5)