7.3Interval Estimates 243
SOLUTION Since
1.645σ
√
n=3.29
3=1.097the 95 percent upper confidence interval is
(9−1.097,∞)=(7.903,∞)and the 95 percent lower confidence interval is
(−∞,9+1.097)=(−∞, 10.097) ■We can also obtain confidence intervals of any specified level of confidence. To do so,
recall thatzαis such that
P{Z>zα}=αwhenZis a standard normal random variable. But this implies (see Figure 7.1) that for
anyα
P{−zα/2<Z<zα/2}= 1 −αAs a result, we see that
P{
−zα/2<√
n(X−μ)
σ<zα/2}
= 1 −αor
P{
−zα/2σ
√
n<X−μ<zα/2σ
√
n}
= 1 −αor
P{
−zα/2σ
√
n<μ−X<zα/2σ
√
n}
= 1 −αThat is,
P{
X−zα/2σ
√
n<μ<X+zα/2σ
√
n}
= 1 −αArea = –−za/2 0 za/2a
Area = – 2
a
2FIGURE 7.1 P{−zα/2<Z<zα/2}= 1 −α.