9.3Distribution of the Estimators 357
=α∑
i(xi−x)+β∑
ixi(xi−x)
∑
ixi^2 −nx^2=β[∑
ixi^2 −x∑
ixi]∑
ix^2 i−nx^2since∑i(xi−x)= 0=βThusE[B]=βand soBis an unbiased estimator ofβ. We will now compute the variance
ofB.
Var(B)=Var(n
∑
i= 1(xi−x)Yi)(n
∑
i= 1xi^2 −nx^2) 2=∑n
i= 1(xi−x)^2 Var(Yi)
(n
∑
i= 1xi^2 −nx^2) 2 by independence=σ^2∑ni= 1(xi−x)^2(n
∑
i= 1xi^2 −nx^2) 2=σ^2
∑n
i= 1xi^2 −nx^2(9.3.2)where the final equality results from the use of the identity
∑ni= 1(xi−x)^2 =∑ni= 1xi^2 −nx^2