360 Chapter 9: Regression
Consequently, the maximum likelihood estimators ofαandβare precisely the values ofα
andβthat minimize
∑n
i= 1 (yi−α−βxi)^2. That is, they are the least squares estimators.NotationIf we let
SxY=∑ni= 1(xi−x)(Yi−Y)=∑ni= 1xiYi−nxYSxx=∑ni= 1(xi−x)^2 =∑ni= 1xi^2 −nx^2SYY=∑ni= 1(Yi−Y)^2 =∑ni= 1Yi^2 −nY^2then the least squares estimators can be expressed as
B=SxY
Sxx
A=Y−BxThe following computational identity forSSR, the sum of squares of the residuals, can
be established.
Computational Identity forSSRSSR=SxxSYY−S^2 xY
Sxx(9.3.4)The following proposition sums up the results of this section.PROPOSITION 9.3.1 Suppose that the responsesYi,i=1,...,nare independent normal
random variables with meansα+βxi and common varianceσ^2. The least squares
estimators ofβandα
B=SxY
Sxx, A=Y−Bxare distributed as follows:
A∼N
α,σ^2∑
ixi^2nSxx
B∼N(β,σ^2 /Sxx)