386 Chapter 9: Regression
Now let us determine the estimator produced by minimizing the weighted sum of
squares. That is, let us determine the value ofμ— call itμw— that minimizes
(Y 1 −kμ)^2
Var(Y 1 )+[Y 2 −(n−k)μ]^2
Var(Y 2 )Since
Var(Y 1 )=kσ^2 , Var(Y 2 )=(n−k)σ^2this is equivalent to choosingμto minimize
(Y 1 −kμ)^2
k+[Y 2 −(n−k)μ]^2
n−kUpon differentiating and then equating to 0, we see thatμw, the minimizing value, satisfies
− 2 k(Y 1 −kμw)
k−2(n−k)[Y 2 −(n−k)μw]
n−k= 0or
Y 1 +Y 2 =nμwor
μw=Y 1 +Y 2
nThat is, the weighted least squares estimator is indeed the preferred estimator
(Y 1 +Y 2 )/n=X. ■
REMARKS
(a)Assuming normally distributed data, the weighted least squares estimators are precisely
the maximum likelihood estimators. This follows because the joint density of the data
Y 1 ,...,Ynis
fY 1 ,...,Yn(y 1 ,...,yn)=∏ni= 11
√
2 π(σ/√
wi)e−(yi−α−βxi)(^2) /(2σ (^2) /wi)
√
w 1 ...wn
(2π)n/2σn
e−
∑n
i= 1 wi(yi−α−βxi)^2 /2σ^2
Consequently, the maximum likelihood estimators ofαandβare precisely the values of
αandβthat minimize the weighted sum of squares
∑n
i= 1 wi(yi−α−βxi)^2.