592 Chapter 14*:Life Testing
increases inθ(why?). Hence,
ifθ<θL, thenPθ{N(T)≤r}<PθL{N(T)≤r}=α
2
ifθ>θU, thenPθ{N(T)≥r}<PθU{N(T)≥r}=α
2It remains to determineθLandθU. To do so, note first that the event thatN(T)≥ris
equivalent to the statement that therth failure occurs before or at timeT. That is,
N(T)≥r⇔X 1 +···+Xr≤Tand so
Pθ{N(T)≥r}=Pθ{X 1 +···+Xr≤T}
=P{γ(r,1/θ)≤T}=P{
θ
2χ 22 r≤T}=P{
χ 22 r≤ 2 T/θ}Hence, upon evaluating the foregoing atθ = θU, and using the fact thatP{χ 22 r ≤
χ 12 −α/2,2r}=α/2, we obtain that
α
2=P{
χ 22 r≤2 T
θU}and that
2 T
θU=χ 12 −α/2,2ror
θU= 2 T/χ 12 −α/2,2rSimilarly, we can show that
θL= 2 T/χα^2 /2,2rand thus the 100(1−α) percent confidence interval estimate forθis
θ∈(2T/χα^2 /2,2r,2T/χ 12 −α/2,2r)