5.2 The Landau problem 157(a)
(b)
(c)
Im pIm pIm pRepRepRepcomplex
pplanecomplex
pplanep
defined
thisregion
onlyp
defined
thisregion
onlyp
defined
thisregion
onlyanalytic
continuation
ofpleastdamped
mode pj−iiFigure 5.2: Contours in complex p-planeFor this choice of path, Eq.(5.35) becomesg(t) =∫∞
0dt′β+i∫∞β−i∞d(pr+ipi)ψ(t′)e(pr+ipi)(t−t′)= i∫∞
0dt′eβ(t−t′)
ψ(t′)∫∞
−∞dpieipi(t−t′)= 2πi∫∞
0dt′eβ(t−t′)
ψ(t′)δ(t−t′)= 2πiψ(t) (5.37)where Eq.(5.36) has been used. Thus,ψ(t) = (2πi)−^1 g(t) and so the inverse of the
Laplace transform is
ψ(t)=1
2 πi∫β+i∞β−i∞dpψ(p)ept, β>γ. (5.38)