248 Chapter 8. Vlasov theory of warm electrostatic waves in a magnetized plasma
for largepasf(p) ≃p^3
3+pξ−lnp= p(
p^2
3+ξ)
−lnp=
2
3
pξ−lnp (8.87)while for smallpit can be approximated asf(p) ≃ pξ−μ
p−lnp= p(
ξ−μ
p^2)
−lnp= p(
ξ−μ
p^2)
−lnp= 2pξ−lnp. (8.88)Forξ> 0 and large roots, the quantitiespl,f(pl)andf′′(pl)are respectivelypl=±(−ξ)^1 /^2 , f(pl) =∓2
3
(−ξ)^3 /^2 −lnpl, f′′(pl) =±2(−ξ)^1 /^2. (8.89)Forξ> 0 the corresponding quantities for the small roots areps=±(−μ/ξ)^1 /^2 , f(ps) =±2(−ξμ)^1 /^2 −lnps, f′′(ps) =∓ 2(−ξ)^3 /^2
μ^1 /^2. (8.90)
The Gaussian integrals corresponding to steepest descent paths over theseξ> 0 sad-
dle points arelarge roots:∫
vicinity
ofsaddleef(p)dp=√
∓π
(−ξ)^3 /^2e∓(^23) (−ξ)^3 /^2
(8.91)
small roots :
∫
vicinity
ofsaddleef(p)dp=√
±π
(−μξ)
1 / 2 e±2(−ξμ)^1 /^2 (8.92)where the logarithmic term inf(p)has been taken into account. Forξ< 0 ,the large
root quantities arepl=±|ξ|^1 /^2 , f(pl) =∓2
3
|ξ|^3 /^2 −lnpl, f′′(pl) =± 2 |ξ|^1 /^2 (8.93)and the small root quantities areps=±(μ/|ξ|)^1 /^2 , f(ps) =∓2(|ξ|μ)^1 /^2 −lnps, f′′(ps) =∓ 2
|ξ|^3 /^2
μ^1 /^2