396 Chapter 13. Fokker-Planck theory of collisions
(a) Show that the Rosenbluthhpotential can be approximated ashF(v) =mT
μ∫
fF(v′)
|v−v′|
dv′≃menF
vμ
where
1
μ=
1
me+
1
mF.
What is the form ofhF(v)for beam electrons interacting with background
plasma (i) electrons and (ii) ions?
(b) By approximating(
v^2 − 2 v·v′+v′^2) 1 / 2
=v(
1 −
v·v′
v^2+
v′^2
2 v^2)
where the beam velocityvis much larger than the background species velocity
v′, show that the Rosenbluthgpotential can be approximated asgF(v) =∫
|v−v′|fF(v′)dv′≃
(
v+1
v3 κTF
2 mF)
nF.Hint: use symmetry arguments when considering the term involvingv·v′.
(c) Assume that the beam velocity isz-directed and letFT=∫
d^2 v⊥fTso thatFT
describes the projection of the 3-D beam distribution onto thezaxis of velocity
space. Sincev=vzandvy=vx≈ 0 show that it is possible to writehF(v) ≃menF
vzμgF(v) ≃(
vz+1
vz3 κTF
2 mF)
nF.Show that the Fokker-Planck equation can be written as∂FT
∂t≃
∑
F=i,enFq^2 TqF^2 lnΛ
4 πε^20 m^2 T
∂
∂vz(
FT
mT
μv^2 z)
+
1
2
∂^2
∂vz^2(
FT
∂^2
∂vz^2(
vz+3 κTF
2 mFvz))
≃
∑
F=i,enFq^2 TqF^2 lnΛ
4 πε^20 m^2 T∂
∂vz[
FT
mT
μv^2 z+
3
2 v^3 zκTF
mF∂FT
∂vz]
.
(d) Taking into account charge neutrality andvz>>vTishow that this can be recast
as∂FT
∂t≃
nee^4 lnΛ
4 πε^20 m^2 e∂
∂vz[
FT
2+Z
v^2 z+
3
2 v^3 zκTe
me∂FT
∂vz